Suppr超能文献

在静态和可扩展培养系统中由封装的胚胎干细胞生成心脏细胞。

Cardiac cell generation from encapsulated embryonic stem cells in static and scalable culture systems.

作者信息

Jing Donghui, Parikh Abhirath, Tzanakakis Emmanuel S

机构信息

Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.

出版信息

Cell Transplant. 2010;19(11):1397-412. doi: 10.3727/096368910X513955. Epub 2010 Jun 29.

Abstract

Heart diseases are major causes of morbidity and mortality linked to extensive loss of cardiac cells. Embryonic stem cells (ESCs) give rise to cardiomyocyte-like cells, which may be used in heart cell replacement therapies. Most cardiogenic differentiation protocols involve the culture of ESCs as embryoid bodies (EBs). Stirred-suspension bioreactor cultures of ESC aggregates may be employed for scaling up the production of cardiomyocyte progeny but the wide range of EB sizes and the unknown effects of the hydrodynamic environment on differentiating EBs are some of the major challenges in tightly controlling the differentiation outcome. Here, we explored the cardiogenic potential of mouse ESCs (mESCs) and human ESCs (hESCs) encapsulated in poly-L-lysine (pLL)-coated alginate capsules. Liquefaction of the capsule core led to the formation of single ESC aggregates within each bead and their average size depended on the concentration of seeded ESCs. Encapsulated mESCs were directed along cardiomyogenic lineages in dishes under serum-free conditions with the addition of bone morphogenetic protein 4 (BMP4). Human ESCs in pLL-layered liquid core (LC) alginate beads were also differentiated towards heart cells in serum-containing media. Besides the robust cell proliferation, higher fractions of cells expressing cardiac markers were detected in ESCs encapsulated in LC than in solid beads. Furthermore, we demonstrated for the first time that ESCs encapsulated in pLL-layered LC alginate beads can be coaxed towards heart cells in stirred-suspension bioreactors. Encapsulated ESCs yielded higher fractions of Nkx2.5- and GATA4-positive cells in the bioreactor compared to dish cultures. Differentiated cells formed beating foci that responded to chronotropic agents in an organotypic manner. Our findings warrant further development and implementation of microencapsulation technologies in conjunction with bioreactor cultivation to enable the production of stem cell-derived cardiac cells appropriate for clinical therapies and applications.

摘要

心脏病是与心脏细胞大量丧失相关的发病和死亡的主要原因。胚胎干细胞(ESCs)可分化产生类心肌细胞,可用于心脏细胞替代疗法。大多数心脏发生分化方案涉及将胚胎干细胞培养成胚状体(EBs)。胚胎干细胞聚集体的搅拌悬浮生物反应器培养可用于扩大心肌细胞后代的生产,但胚状体大小范围广泛以及流体动力学环境对分化中的胚状体的未知影响是严格控制分化结果的一些主要挑战。在这里,我们探索了包裹在聚-L-赖氨酸(pLL)包被的藻酸盐胶囊中的小鼠胚胎干细胞(mESCs)和人类胚胎干细胞(hESCs)的心脏发生潜能。胶囊核心的液化导致每个珠子内形成单个胚胎干细胞聚集体,其平均大小取决于接种的胚胎干细胞的浓度。在无血清条件下,添加骨形态发生蛋白4(BMP4),使包裹的小鼠胚胎干细胞在培养皿中沿心肌发生谱系分化。pLL层状液芯(LC)藻酸盐珠中的人类胚胎干细胞在含血清培养基中也向心脏细胞分化。除了强大的细胞增殖外,在LC中包裹的胚胎干细胞中检测到表达心脏标志物的细胞比例高于实心珠中的细胞。此外,我们首次证明,包裹在pLL层状LC藻酸盐珠中的胚胎干细胞可以在搅拌悬浮生物反应器中被诱导分化为心脏细胞。与培养皿培养相比,包裹的胚胎干细胞在生物反应器中产生更高比例的Nkx2.5和GATA4阳性细胞。分化的细胞形成了搏动灶,以器官型方式对变时药物作出反应。我们的研究结果为进一步开发和应用微囊化技术结合生物反应器培养提供了依据,以生产适合临床治疗和应用的干细胞衍生心脏细胞。

相似文献

1
Cardiac cell generation from encapsulated embryonic stem cells in static and scalable culture systems.
Cell Transplant. 2010;19(11):1397-412. doi: 10.3727/096368910X513955. Epub 2010 Jun 29.
6
Bone marrow stromal cells as an inducer for cardiomyocyte differentiation from mouse embryonic stem cells.
Ann Anat. 2010 Sep 20;192(5):314-21. doi: 10.1016/j.aanat.2010.07.001. Epub 2010 Aug 5.
8
Alginate encapsulation parameters influence the differentiation of microencapsulated embryonic stem cell aggregates.
Biotechnol Bioeng. 2014 Mar;111(3):618-31. doi: 10.1002/bit.25121. Epub 2013 Oct 25.
10
Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor.
Adv Healthc Mater. 2015 Jan 7;4(1):77-86. doi: 10.1002/adhm.201400138. Epub 2014 May 12.

引用本文的文献

1
Hydrogel microsphere stem cell encapsulation enhances cardiomyocyte differentiation and functionality in scalable suspension system.
Bioact Mater. 2024 Oct 1;43:423-440. doi: 10.1016/j.bioactmat.2024.08.043. eCollection 2025 Jan.
2
Tissue Engineering Techniques for Induced Pluripotent Stem Cell Derived Three-Dimensional Cardiac Constructs.
Tissue Eng Part B Rev. 2022 Aug;28(4):891-911. doi: 10.1089/ten.TEB.2021.0088. Epub 2021 Nov 23.
3
Xenogeneic-Free System for Biomanufacturing of Cardiomyocyte Progeny From Human Pluripotent Stem Cells.
Front Bioeng Biotechnol. 2020 Oct 23;8:571425. doi: 10.3389/fbioe.2020.571425. eCollection 2020.
4
Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy.
Nat Rev Endocrinol. 2020 Sep;16(9):506-518. doi: 10.1038/s41574-020-0375-3. Epub 2020 Jun 25.
5
An automated and parallelised DIY-dosing unit for individual and complex feeding profiles: Construction, validation and applications.
PLoS One. 2019 Jun 19;14(6):e0217268. doi: 10.1371/journal.pone.0217268. eCollection 2019.
6
Expansion Culture of Human Pluripotent Stem Cells and Production of Cardiomyocytes.
Bioengineering (Basel). 2019 May 24;6(2):48. doi: 10.3390/bioengineering6020048.
7
Three-Dimensional (3D) Printed Microneedles for Microencapsulated Cell Extrusion.
Bioengineering (Basel). 2018 Jul 31;5(3):59. doi: 10.3390/bioengineering5030059.
10
Bioencapsulation technologies in tissue engineering.
J Appl Biomater Funct Mater. 2016 Nov 2;14(4):e395-e403. doi: 10.5301/jabfm.5000299.

本文引用的文献

1
Hydrodynamic modulation of embryonic stem cell differentiation by rotary orbital suspension culture.
Biotechnol Bioeng. 2010 Feb 15;105(3):611-26. doi: 10.1002/bit.22578.
2
Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11.
Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16978-83. doi: 10.1073/pnas.0905550106. Epub 2009 Sep 23.
3
Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells.
J Biotechnol. 2009 Dec;144(4):304-12. doi: 10.1016/j.jbiotec.2009.08.008. Epub 2009 Aug 15.
4
5
Effect of micro- and macroencapsulation on oxygen consumption by pancreatic islets.
Cell Transplant. 2009;18(2):195-201. doi: 10.3727/096368909788341252.
6
Mass preparation of size-controlled mouse embryonic stem cell aggregates and induction of cardiac differentiation by cell patterning method.
Biomaterials. 2009 Sep;30(26):4384-9. doi: 10.1016/j.biomaterials.2009.05.003. Epub 2009 May 31.
8
Propagation of embryonic stem cells in stirred suspension without serum.
Biotechnol Prog. 2008 Nov-Dec;24(6):1342-52. doi: 10.1002/btpr.57.
10
The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering.
Biomaterials. 2009 Feb;30(4):499-507. doi: 10.1016/j.biomaterials.2008.07.028. Epub 2008 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验