Department of Physical Chemistry, University of Pannonia, P.O. Box 158, H-8201 Veszprém, Hungary.
J Chem Phys. 2010 Jun 28;132(24):244103. doi: 10.1063/1.3443558.
Two iterative procedures have been proposed recently to calculate the chemical potentials corresponding to prescribed concentrations from grand canonical Monte Carlo (GCMC) simulations. Both are based on repeated GCMC simulations with updated excess chemical potentials until the desired concentrations are established. In this paper, we propose combining our robust and fast converging iteration algorithm [Malasics, Gillespie, and Boda, J. Chem. Phys. 128, 124102 (2008)] with the suggestion of Lamperski [Mol. Simul. 33, 1193 (2007)] to average the chemical potentials in the iterations (instead of just using the chemical potentials obtained in the last iteration). We apply the unified method for various electrolyte solutions and show that our algorithm is more efficient if we use the averaging procedure. We discuss the convergence problems arising from violation of charge neutrality when inserting/deleting individual ions instead of neutral groups of ions (salts). We suggest a correction term to the iteration procedure that makes the algorithm efficient to determine the chemical potentials of individual ions too.
最近提出了两种迭代程序,可从巨正则蒙特卡罗(GCMC)模拟中计算出与规定浓度相对应的化学势。这两种方法都是基于重复的 GCMC 模拟,并更新过剩化学势,直到达到所需的浓度。在本文中,我们提出将我们强大且快速收敛的迭代算法[Malasics、Gillespie 和 Boda,J. Chem. Phys. 128, 124102 (2008)]与 Lamperski 的建议[Mol. Simul. 33, 1193 (2007)]相结合,在迭代中对化学势进行平均(而不仅仅是使用最后一次迭代中获得的化学势)。我们将统一方法应用于各种电解质溶液,并表明如果我们使用平均过程,我们的算法效率更高。我们讨论了当插入/删除单个离子而不是离子(盐)的中性基团时违反电荷中性会出现的收敛问题。我们建议在迭代过程中添加一个修正项,以使算法能够有效地确定单个离子的化学势。