Suppr超能文献

使用迭代算法在巨正则系综中模拟规定的粒子密度。

Simulating prescribed particle densities in the grand canonical ensemble using iterative algorithms.

作者信息

Malasics Attila, Gillespie Dirk, Boda Dezso

机构信息

Department of Physical Chemistry, University of Pannonia, P.O. Box 158, H-8201 Veszprém, Hungary.

出版信息

J Chem Phys. 2008 Mar 28;128(12):124102. doi: 10.1063/1.2839302.

Abstract

We present two efficient iterative Monte Carlo algorithms in the grand canonical ensemble with which the chemical potentials corresponding to prescribed (targeted) partial densities can be determined. The first algorithm works by always using the targeted densities in the kT log(rho(i)) (ideal gas) terms and updating the excess chemical potentials from the previous iteration. The second algorithm extrapolates the chemical potentials in the next iteration from the results of the previous iteration using a first order series expansion of the densities. The coefficients of the series, the derivatives of the densities with respect to the chemical potentials, are obtained from the simulations by fluctuation formulas. The convergence of this procedure is shown for the examples of a homogeneous Lennard-Jones mixture and a NaCl-CaCl(2) electrolyte mixture in the primitive model. The methods are quite robust under the conditions investigated. The first algorithm is less sensitive to initial conditions.

摘要

我们提出了两种在巨正则系综中的高效迭代蒙特卡罗算法,利用这两种算法可以确定与规定(目标)部分密度相对应的化学势。第一种算法的工作方式是始终在kT log(rho(i))(理想气体)项中使用目标密度,并根据上一次迭代更新过量化学势。第二种算法使用密度的一阶级数展开,根据上一次迭代的结果推断下一次迭代中的化学势。该级数的系数,即密度相对于化学势的导数,通过涨落公式从模拟中获得。对于均匀的 Lennard-Jones 混合物和原始模型中的 NaCl-CaCl₂ 电解质混合物的例子,展示了该过程的收敛性。在所研究的条件下,这些方法相当稳健。第一种算法对初始条件不太敏感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验