一个 RAS 通路依赖性的基因表达特征可预测对 PI3K 和 RAS 通路抑制剂的反应,并扩大了 RAS 通路激活肿瘤的人群。
A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors.
机构信息
Department of Molecular Profiling and Research Informatics, Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
出版信息
BMC Med Genomics. 2010 Jun 30;3:26. doi: 10.1186/1755-8794-3-26.
BACKGROUND
Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence.
METHODS
We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets.
RESULTS
The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer.
CONCLUSIONS
These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors.
背景
Ras 信号通路的过度激活是许多癌症的驱动因素,Ras 通路的激活可以预测对靶向治疗的反应。因此,最佳的 Ras 通路激活测量方法至关重要。我们工作的主要重点是开发一种能够预测 Ras 通路依赖性的基因表达特征。
方法
我们使用多个数据集之间与 Ras 通路相关的基因的一致表达,得出 Ras 通路基因表达特征,并在临床前癌症模型和人类肿瘤中生成 Ras 通路激活评分。然后,我们将该特征与临床前和临床数据集中的 KRAS 突变状态和药物反应数据相关联。
结果
RAS 特征评分可预测肺肿瘤和细胞系中的 KRAS 突变状态,在高 (>90%)敏感性但相对较低 (50%)特异性方面具有较高的敏感性,因为这些样本在没有 KRAS 突变的情况下表现出明显的 Ras 通路激活。在肺和乳腺癌细胞系面板中,RAS 通路特征评分与 pMEK 和 pERK 表达相关,并预测 KRAS 突变型和 KRAS 野生型组中 AKT 抑制的耐药性和对 MEK 抑制的敏感性。RAS 通路特征在对 AKT 抑制获得耐药性的乳腺癌细胞系中上调,并被 MEK 抑制下调。在肺癌细胞系中,使用 siRNA 敲低 KRAS 表明,RAS 通路特征是衡量对 Ras 依赖性的更好指标,而不是 KRAS 突变状态。在人类肿瘤中,RAS 通路特征在 ER 阴性乳腺癌和肺腺癌中升高,并预测转移性结直肠癌对西妥昔单抗的耐药性。
结论
这些数据表明,RAS 通路特征在预测对 Ras 信号的依赖性方面优于 KRAS 突变状态,可预测对 PI3K 和 RAS 通路抑制剂的反应,并且在肺和乳腺癌中最有可能具有最大的临床应用价值。