Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Plant Physiol. 2010 Sep;154(1):121-33. doi: 10.1104/pp.110.155242. Epub 2010 Jun 30.
The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production.
我们研究了百日草木质部导管(TEs)的细胞壁的化学和结构组织,这些导管通过在体外木质部形成过程中在初生壁下发育出明显的次生壁增厚而特化。我们使用了三种成像平台,并结合细胞壁成分的化学提取,研究了单个百日草 TEs 的组成和结构。使用带有绿色荧光蛋白标记的、针对结晶纤维素的梭菌属热纤维梭菌家族 3 碳水化合物结合模块的荧光显微镜,我们发现酸处理的二氧化氯处理后,TEs 中纤维素的可及性和结合显著增加。基于同步辐射的傅里叶变换红外光谱显微镜的化学组成分析表明,处理过的 TEs 中木质素和其他一些多糖有适度损失。原子力显微镜被用于广泛地描述 TEs 细胞壁表面的形貌,揭示出覆盖在纤维素原纤维底层网格状结构上的外层颗粒状基质。通过超声处理产生的次生壁碎片来确定 TEs 的内部组织。原子力显微镜显示,生成的环、螺旋和网状结构由排列成平行的原纤维组成。基于这些综合结果,我们生成了一个由三层组成的百日草 TEs 结构模型:最外层的颗粒层、由纤维素原纤维网格组成的中层初生壁,以及包含平行纤维素原纤维的内层次生壁增厚。除了对植物生物学的深入了解外,使用百日草 TEs 的研究还可能在评估细胞壁对酶和微生物降解的反应方面特别有效,从而有助于当前木质纤维素生物燃料生产的努力。