Suppr超能文献

在单个百日菊韧皮部细胞中成像细胞壁结构。

Imaging cell wall architecture in single Zinnia elegans tracheary elements.

机构信息

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.

出版信息

Plant Physiol. 2010 Sep;154(1):121-33. doi: 10.1104/pp.110.155242. Epub 2010 Jun 30.

Abstract

The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production.

摘要

我们研究了百日草木质部导管(TEs)的细胞壁的化学和结构组织,这些导管通过在体外木质部形成过程中在初生壁下发育出明显的次生壁增厚而特化。我们使用了三种成像平台,并结合细胞壁成分的化学提取,研究了单个百日草 TEs 的组成和结构。使用带有绿色荧光蛋白标记的、针对结晶纤维素的梭菌属热纤维梭菌家族 3 碳水化合物结合模块的荧光显微镜,我们发现酸处理的二氧化氯处理后,TEs 中纤维素的可及性和结合显著增加。基于同步辐射的傅里叶变换红外光谱显微镜的化学组成分析表明,处理过的 TEs 中木质素和其他一些多糖有适度损失。原子力显微镜被用于广泛地描述 TEs 细胞壁表面的形貌,揭示出覆盖在纤维素原纤维底层网格状结构上的外层颗粒状基质。通过超声处理产生的次生壁碎片来确定 TEs 的内部组织。原子力显微镜显示,生成的环、螺旋和网状结构由排列成平行的原纤维组成。基于这些综合结果,我们生成了一个由三层组成的百日草 TEs 结构模型:最外层的颗粒层、由纤维素原纤维网格组成的中层初生壁,以及包含平行纤维素原纤维的内层次生壁增厚。除了对植物生物学的深入了解外,使用百日草 TEs 的研究还可能在评估细胞壁对酶和微生物降解的反应方面特别有效,从而有助于当前木质纤维素生物燃料生产的努力。

相似文献

1
Imaging cell wall architecture in single Zinnia elegans tracheary elements.
Plant Physiol. 2010 Sep;154(1):121-33. doi: 10.1104/pp.110.155242. Epub 2010 Jun 30.
3
Non-cell-autonomous postmortem lignification of tracheary elements in Zinnia elegans.
Plant Cell. 2013 Apr;25(4):1314-28. doi: 10.1105/tpc.113.110593. Epub 2013 Apr 9.
4
Revealing the Architecture of the Cell Wall in Living Plant Cells by Bioimaging and Enzymatic Degradation.
Biomacromolecules. 2020 Jan 13;21(1):95-103. doi: 10.1021/acs.biomac.9b00979. Epub 2019 Sep 20.
6
Sucrose synthase localizes to cellulose synthesis sites in tracheary elements.
Phytochemistry. 2001 Jul;57(6):823-33. doi: 10.1016/s0031-9422(01)00045-0.
8
Establishing in vitro Zinnia elegans cell suspension culture with high tracheary element differentiation.
Cell Biol Int. 2009 Apr;33(4):524-33. doi: 10.1016/j.cellbi.2009.01.019. Epub 2009 Feb 14.

引用本文的文献

2
Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties.
Beilstein J Nanotechnol. 2024 Dec 13;15:1603-1618. doi: 10.3762/bjnano.15.126. eCollection 2024.
3
Xylan Is Critical for Proper Bundling and Alignment of Cellulose Microfibrils in Plant Secondary Cell Walls.
Front Plant Sci. 2021 Sep 23;12:737690. doi: 10.3389/fpls.2021.737690. eCollection 2021.
4
Processes controlling programmed cell death of root velamen radicum in an epiphytic orchid.
Ann Bot. 2020 Jul 24;126(2):261-275. doi: 10.1093/aob/mcaa077.
5
Quantitative visualization of pectin distribution maps of peach fruits.
Sci Rep. 2017 Aug 24;7(1):9275. doi: 10.1038/s41598-017-09817-7.
7
WD40-Repeat Proteins in Plant Cell Wall Formation: Current Evidence and Research Prospects.
Front Plant Sci. 2015 Dec 22;6:1112. doi: 10.3389/fpls.2015.01112. eCollection 2015.
10
Cooperative lignification of xylem tracheary elements.
Plant Signal Behav. 2015;10(4):e1003753. doi: 10.1080/15592324.2014.1003753.

本文引用的文献

4
Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy.
Nat Nanotechnol. 2010 Apr;5(4):280-5. doi: 10.1038/nnano.2010.29. Epub 2010 Mar 14.
5
Atomic force microscopy: probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution.
Mol Microbiol. 2010 Mar;75(6):1327-36. doi: 10.1111/j.1365-2958.2010.07064.x. Epub 2010 Feb 4.
6
Establishing in vitro Zinnia elegans cell suspension culture with high tracheary element differentiation.
Cell Biol Int. 2009 Apr;33(4):524-33. doi: 10.1016/j.cellbi.2009.01.019. Epub 2009 Feb 14.
7
Towards nanomicrobiology using atomic force microscopy.
Nat Rev Microbiol. 2008 Sep;6(9):674-80. doi: 10.1038/nrmicro1948.
8
Atomic force microscopy and chemical force microscopy of microbial cells.
Nat Protoc. 2008;3(7):1132-8. doi: 10.1038/nprot.2008.101.
9
Cell-wall carbohydrates and their modification as a resource for biofuels.
Plant J. 2008 May;54(4):559-68. doi: 10.1111/j.1365-313X.2008.03463.x.
10
In vitro high-resolution structural dynamics of single germinating bacterial spores.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9644-9. doi: 10.1073/pnas.0610626104. Epub 2007 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验