Huh Hyun, Jayachandran Dharanidaran, Sun Junhong, Irfan Mohammad, Lam Eric, Chundawat Shishir P S, Lee Sang-Hyuk
Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Rd, Piscataway, NJ 08854, USA.
Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd, Piscataway, NJ 08854, USA.
Sci Adv. 2025 Mar 21;11(12):eads6312. doi: 10.1126/sciadv.ads6312.
Cellulose, the most abundant polysaccharide on earth composing plant cell walls, is synthesized by coordinated action of multiple enzymes in cellulose synthase complexes embedded within the plasma membrane. Multiple chains of cellulose fibrils form intertwined extracellular matrix networks. It remains largely unknown how newly synthesized cellulose is assembled into an intricate fibril network on cell surfaces. Here, we have established an in vivo time-resolved imaging platform to continuously visualize cellulose biosynthesis and fibril network assembly on protoplast surfaces as the primary cell wall regenerates. Our observations provide the basis for a model of cellulose fibril network development in protoplasts driven by an interplay of multiscale dynamics that includes rapid diffusion and coalescence of nascent cellulose fibrils, processive elongation of single fibrils, and cellulose fibrillar network rearrangement during maturation. This study provides fresh insights into the dynamic and mechanistic aspects of cell wall synthesis at the single-cell level.
纤维素是地球上最丰富的多糖,构成植物细胞壁,它由嵌入质膜的纤维素合酶复合体中的多种酶协同作用合成。多条纤维素微纤丝链形成交织的细胞外基质网络。新合成的纤维素如何在细胞表面组装成复杂的微纤丝网络,目前仍 largely unknown。在这里,我们建立了一个体内时间分辨成像平台,以在原生质体表面初生细胞壁再生时连续可视化纤维素生物合成和微纤丝网络组装。我们的观察结果为原生质体中纤维素微纤丝网络发育模型提供了基础,该模型由多尺度动力学的相互作用驱动,包括新生纤维素微纤丝的快速扩散和聚结、单根微纤丝的持续伸长以及成熟过程中纤维素微纤丝网络的重排。这项研究为单细胞水平细胞壁合成的动态和机制方面提供了新的见解。