Suppr超能文献

采用反转射频极化确保 MRI 下植入设备的安全性。

Ensuring safety of implanted devices under MRI using reversed RF polarization.

机构信息

Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305-9510, USA.

出版信息

Magn Reson Med. 2010 Sep;64(3):823-33. doi: 10.1002/mrm.22468.

Abstract

Patients with long-wire medical implants are currently prevented from undergoing magnetic resonance imaging (MRI) scans due to the risk of radio frequency (RF) heating. We have developed a simple technique for determining the heating potential for these implants using reversed radio frequency (RF) polarization. This technique could be used on a patient-to-patient basis as a part of the standard prescan procedure to ensure that the subject's device does not pose a heating risk. By using reversed quadrature polarization, the MR scan can be sensitized exclusively to the potentially dangerous currents in the device. Here, we derive the physical principles governing the technique and explore the primary sources of inaccuracy. These principles are verified through finite-difference simulations and through phantom scans of implant leads. These studies demonstrate the potential of the technique for sensitively detecting potentially dangerous coupling conditions before they can do any harm.

摘要

目前,带有长线医疗植入物的患者由于存在射频 (RF) 加热的风险而无法进行磁共振成像 (MRI) 扫描。我们已经开发出一种简单的技术,可使用反向射频 (RF) 极化来确定这些植入物的加热潜力。该技术可以针对每个患者作为标准预扫描程序的一部分使用,以确保患者的设备不会带来加热风险。通过使用反向正交极化,MR 扫描可以专门对设备中潜在危险的电流进行敏化。在这里,我们推导出了控制该技术的物理原理,并探讨了主要的不准确性来源。这些原理通过有限差分模拟和植入物导丝的体模扫描得到验证。这些研究表明,该技术具有在潜在危险的耦合条件造成危害之前对其进行灵敏检测的潜力。

相似文献

1
Ensuring safety of implanted devices under MRI using reversed RF polarization.
Magn Reson Med. 2010 Sep;64(3):823-33. doi: 10.1002/mrm.22468.
2
Comments on "Ensuring safety of implanted devices under MRI using reversed polarization".
Magn Reson Med. 2011 Dec;66(6):1515-6; author reply 1517. doi: 10.1002/mrm.22992. Epub 2011 Oct 24.
3
Offline impedance measurements for detection and mitigation of dangerous implant interactions: an RF safety prescreen.
Magn Reson Med. 2015 Mar;73(3):1328-39. doi: 10.1002/mrm.25202. Epub 2014 Mar 12.
6
Implantable medical devices MRI safe.
Stud Health Technol Inform. 2013;189:96-100.
7
Thermo-Acoustic Ultrasound for Detection of RF-Induced Device Lead Heating in MRI.
IEEE Trans Med Imaging. 2018 Feb;37(2):536-546. doi: 10.1109/TMI.2017.2764425. Epub 2017 Oct 18.
8
Impact of capped and uncapped abandoned leads on the heating of an MR-conditional pacemaker implant.
Magn Reson Med. 2015 Jan;73(1):390-400. doi: 10.1002/mrm.25106. Epub 2014 Jan 16.
9
Detection of RF unsafe devices using a parallel transmission MR system.
Magn Reson Med. 2013 Nov;70(5):1440-9. doi: 10.1002/mrm.24558. Epub 2012 Nov 30.

引用本文的文献

3
Deep learning-based local SAR prediction using B maps and structural MRI of the head for parallel transmission at 7 T.
Magn Reson Med. 2023 Dec;90(6):2524-2538. doi: 10.1002/mrm.29797. Epub 2023 Jul 19.
4
MRI-guided endovascular intervention: current methods and future potential.
Expert Rev Med Devices. 2022 Oct;19(10):763-778. doi: 10.1080/17434440.2022.2141110.
5
A single setup approach for the MRI-based measurement and validation of the transfer function of elongated medical implants.
Magn Reson Med. 2021 Nov;86(5):2751-2765. doi: 10.1002/mrm.28840. Epub 2021 May 25.
6
Explaining RF induced current patterns on implantable medical devices during MRI using the transfer matrix.
Med Phys. 2021 Jan;48(1):132-141. doi: 10.1002/mp.14225. Epub 2020 Nov 28.
7
Safe guidewire visualization using the modes of a PTx transmit array MR system.
Magn Reson Med. 2020 Jun;83(6):2343-2355. doi: 10.1002/mrm.28069. Epub 2019 Nov 13.
9
MRI-based, wireless determination of the transfer function of a linear implant: Introduction of the transfer matrix.
Magn Reson Med. 2018 Dec;80(6):2771-2784. doi: 10.1002/mrm.27218. Epub 2018 Apr 24.
10
Thermo-Acoustic Ultrasound for Detection of RF-Induced Device Lead Heating in MRI.
IEEE Trans Med Imaging. 2018 Feb;37(2):536-546. doi: 10.1109/TMI.2017.2764425. Epub 2017 Oct 18.

本文引用的文献

2
Analysis of tissue and arterial blood temperatures in the resting human forearm.
J Appl Physiol. 1948 Aug;1(2):93-122. doi: 10.1152/jappl.1948.1.2.93.
3
Spatial distribution of RF-induced E-fields and implant heating in MRI.
Magn Reson Med. 2008 Aug;60(2):312-9. doi: 10.1002/mrm.21475.
4
Electromagnetic considerations for RF current density imaging [MRI technique].
IEEE Trans Med Imaging. 1995;14(3):515-24. doi: 10.1109/42.414617.
5
A catheter tracking method using reverse polarization for MR-guided interventions.
Magn Reson Med. 2007 Dec;58(6):1224-31. doi: 10.1002/mrm.21419.
9
Is magnetic resonance imaging safe for patients with neurostimulation systems used for deep brain stimulation?
Neurosurgery. 2005 Nov;57(5):1056-62; discussion 1056-62. doi: 10.1227/01.neu.0000186935.87971.2a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验