Graf Hansjörg, Steidle Günter, Martirosian Petros, Lauer Ulrike A, Schick Fritz
Section on Experimental Radiology, University Hospital Tübingen, Germany.
Med Phys. 2006 Jan;33(1):124-7. doi: 10.1118/1.2132571.
In magnetic resonance imaging near metal parts variations in radio frequency (rf)-amplitude and of receive sensitivity must be considered. For loop structures, e.g., vascular stents, B1 produces rf eddy currents in accordance to Faraday's law; the B1-related electrical rf field E1 injects directly to elongated structures (e.g., wires). Locally, the rf magnetic field Bl,ind (induced B1) is superimposed onto the rf field from the transmitter coil, which near the metal can dominate spin excitation. Geometry and arrangement of the parts determine the polarization of B(1,ind). Components parallel to B0 are of special interest. A copper sheet (100 mm x 15 mm, 3 mm thick) and a 27 cm long copper wire were examined in a water phantom using the spin-echo (SE) technique. In addition to rf-amplitude amplification, rf-phase shift due to z components of B(1,ind) could be detected near the metallic objects. Periodic rf-amplitude instabilities had an amplified effect for phase-shifted regions. Phase-encoding artifacts occurred as distinct ghosts (TR=200 ms) or band-like smearing (TR=201 ms) from affected spin ensembles. SE phase imaging can potentially be used in interventional magnetic resonance imaging for background-free localization of metallic markers.
在靠近金属部件的磁共振成像中,必须考虑射频(rf)幅度和接收灵敏度的变化。对于环形结构,例如血管支架,B1会根据法拉第定律产生射频涡流;与B1相关的射频电场E1会直接注入到细长结构(例如导线)中。在局部,射频磁场Bl,ind(感应B1)会叠加到发射线圈产生的射频场上,在金属附近,该场可能主导自旋激发。部件的几何形状和排列决定了B(1,ind)的极化。与B0平行的分量特别值得关注。使用自旋回波(SE)技术,在水模中对一块铜板(100毫米×15毫米,3毫米厚)和一根27厘米长的铜线进行了检测。除了射频幅度放大外,在金属物体附近还能检测到由于B(1,ind)的z分量导致的射频相移。周期性的射频幅度不稳定性对相移区域有放大作用。相位编码伪影表现为受影响自旋集合产生的明显重影(TR = 200毫秒)或带状模糊(TR = 201毫秒)。SE相位成像有可能用于介入磁共振成像中金属标记物的无背景定位。