Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
Clin Trials. 2010;7(1 Suppl):S75-87. doi: 10.1177/1740774510373494. Epub 2010 Jul 1.
Although human leukocyte antigen (HLA) DQ and DR loci appear to confer the strongest genetic risk for type 1 diabetes, more detailed information is required for other loci within the HLA region to understand causality and stratify additional risk factors. The Type 1 Diabetes Genetics Consortium (T1DGC) study design included high-resolution genotyping of HLA-A, B, C, DRB1, DQ, and DP loci in all affected sibling pair and trio families, and cases and controls, recruited from four networks worldwide, for analysis with clinical phenotypes and immunological markers.
In this article, we present the operational strategy of training, classification, reporting, and quality control of HLA genotyping in four laboratories on three continents over nearly 5 years.
Methods to standardize HLA genotyping at eight loci included: central training and initial certification testing; the use of uniform reagents, protocols, instrumentation, and software versions; an automated data transfer; and the use of standardized nomenclature and allele databases. We implemented a rigorous and consistent quality control process, reinforced by repeated workshops, yearly meetings, and telephone conferences.
A total of 15,246 samples have been HLA genotyped at eight loci to four-digit resolution; an additional 6797 samples have been HLA genotyped at two loci. The genotyping repeat rate decreased significantly over time, with an estimated unresolved Mendelian inconsistency rate of 0.21%. Annual quality control exercises tested 2192 genotypes (4384 alleles) and achieved 99.82% intra-laboratory and 99.68% inter-laboratory concordances.
The chosen genotyping platform was unable to distinguish many allele combinations, which would require further multiple stepwise testing to resolve. For these combinations, a standard allele assignment was agreed upon, allowing further analysis if required.
High-resolution HLA genotyping can be performed in multiple laboratories using standard equipment, reagents, protocols, software, and communication to produce consistent and reproducible data with minimal systematic error. Many of the strategies used in this study are generally applicable to other large multi-center studies.
虽然人类白细胞抗原 (HLA) DQ 和 DR 基因座似乎为 1 型糖尿病提供了最强的遗传风险,但需要更详细的信息来了解 HLA 区域内的其他基因座的因果关系,并对其他风险因素进行分层。1 型糖尿病遗传学联合会 (T1DGC) 的研究设计包括对来自全球四个网络的所有受影响的同胞对和三胞胎家庭以及病例和对照进行 HLA-A、B、C、DRB1、DQ 和 DP 基因座的高分辨率基因分型,进行分析与临床表型和免疫标志物。
本文介绍了近 5 年来在三大洲的四个实验室进行 HLA 基因分型的培训、分类、报告和质量控制的操作策略。
标准化 8 个基因座 HLA 基因分型的方法包括:中央培训和初始认证测试;使用统一的试剂、方案、仪器和软件版本;自动数据传输;以及使用标准化命名法和等位基因数据库。我们实施了严格一致的质量控制过程,通过反复的研讨会、年度会议和电话会议加以加强。
共对 15246 个样本进行了 8 个基因座的 HLA 基因分型,分辨率达到四位数;另外 6797 个样本进行了两个基因座的 HLA 基因分型。随着时间的推移,基因分型的重复率显著下降,估计未解决的孟德尔不一致率为 0.21%。年度质量控制测试了 2192 个基因型(4384 个等位基因),达到了 99.82%的实验室内部和 99.68%的实验室间一致性。
所选的基因分型平台无法区分许多等位基因组合,需要进一步进行多步测试才能解决。对于这些组合,同意了一个标准的等位基因分配,以便在需要时进行进一步的分析。
使用标准设备、试剂、方案、软件和通信可以在多个实验室中进行高分辨率 HLA 基因分型,从而产生具有最小系统误差的一致和可重复的数据。本研究中使用的许多策略通常适用于其他大型多中心研究。