Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia.
J Biol Chem. 2010 Sep 10;285(37):28529-39. doi: 10.1074/jbc.M110.111120. Epub 2010 Jul 1.
Ferlins are an ancient family of C2 domain-containing proteins, with emerging roles in vesicular trafficking and human disease. Dysferlin mutations cause inherited muscular dystrophy, and dysferlin also shows abnormal plasma membrane expression in other forms of muscular dystrophy. We establish dysferlin as a short-lived (protein half-life approximately 4-6 h) and transitory transmembrane protein (plasma membrane half-life approximately 3 h), with a propensity for rapid endocytosis when mutated, and an association with a syntaxin-4 endocytic route. Dysferlin plasma membrane expression and endocytic rate is regulated by the C2B-FerI-C2C motif, with a critical role identified for C2C. Disruption of C2C dramatically reduces plasma membrane dysferlin (by 2.5-fold), due largely to accelerated endocytosis (by 2.5-fold). These properties of reduced efficiency of plasma membrane expression due to accelerated endocytosis are also a feature of patient missense mutant L344P (within FerI, adjacent to C2C). Importantly, dysferlin mutants that demonstrate accelerated endocytosis also display increased protein lability via endosomal proteolysis, implicating endosomal-mediated proteolytic degradation as a novel basis for dysferlin-deficiency in patients with single missense mutations. Vesicular labeling studies establish that dysferlin mutants rapidly transit from EEA1-positive early endosomes through to dextran-positive lysosomes, co-labeled by syntaxin-4 at multiple stages of endosomal transit. In summary, our studies define a transient biology for dysferlin, relevant to emerging patient therapeutics targeting dysferlin replacement. We introduce accelerated endosomal-directed degradation as a basis for lability of dysferlin missense mutants in dysferlinopathy, and show that dysferlin and syntaxin-4 similarly transit a common endosomal pathway in skeletal muscle cells.
肌营养不良蛋白是一类古老的 C2 结构域蛋白家族,在囊泡运输和人类疾病中具有重要作用。肌营养不良蛋白基因突变导致遗传性肌肉萎缩症,肌营养不良蛋白在其他形式的肌肉萎缩症中也表现出异常的质膜表达。我们确定肌营养不良蛋白是一种短寿命(蛋白半衰期约为 4-6 小时)和短暂的跨膜蛋白(质膜半衰期约为 3 小时),突变时易发生快速内吞作用,并与突触素-4 内吞途径有关。肌营养不良蛋白的质膜表达和内吞率受 C2B-FerI-C2C 基序调节,其中 C2C 起关键作用。C2C 的破坏显著降低了质膜肌营养不良蛋白(降低 2.5 倍),主要是由于内吞作用加速(增加 2.5 倍)。由于内吞作用加速导致质膜表达效率降低的这些特性也是患者错义突变 L344P(位于 FerI 内,紧邻 C2C)的特征。重要的是,显示加速内吞作用的肌营养不良蛋白突变体也通过内体蛋白酶解表现出增加的蛋白质不稳定性,这表明内体介导的蛋白水解降解是患者单一位点错义突变导致肌营养不良蛋白缺陷的新基础。囊泡标记研究确立了肌营养不良蛋白突变体从 EEA1 阳性早期内体快速转运到葡聚糖阳性溶酶体,通过内体转运的多个阶段共标记突触素-4。总之,我们的研究定义了肌营养不良蛋白的短暂生物学特性,这与新兴的针对肌营养不良蛋白替代的患者治疗方法相关。我们引入加速的内体定向降解作为肌营养不良蛋白病中肌营养不良蛋白错义突变体不稳定性的基础,并表明肌营养不良蛋白和突触素-4在骨骼肌细胞中同样通过一个共同的内体途径转运。