Woolger Natalie, Bournazos Adam, Sophocleous Reece A, Evesson Frances J, Lek Angela, Driemer Birgit, Sutton R Bryan, Cooper Sandra T
From the Institute for Neuroscience and Muscle Research, Kids Research Institute, The Children's Hospital at Westmead, Locked Bag 4001, Westmead 2145, Australia.
Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney 2006, Australia, and.
J Biol Chem. 2017 Nov 10;292(45):18577-18591. doi: 10.1074/jbc.M117.790014. Epub 2017 Sep 13.
Dysferlin is a large transmembrane protein that plays a key role in cell membrane repair and underlies a recessive form of inherited muscular dystrophy. Dysferlinopathy is characterized by absence or marked reduction of dysferlin protein with 43% of reported pathogenic variants being missense variants that span the length of the dysferlin protein. The unique structure of dysferlin, with seven tandem C2 domains separated by linkers, suggests dysferlin may dynamically associate with phospholipid membranes in response to Ca signaling. However, the overall conformation of the dysferlin protein is uncharacterized. To dissect the structural architecture of dysferlin, we have applied the method of limited proteolysis, which allows nonspecific digestion of unfolded peptides by trypsin. Using five antibodies spanning the dysferlin protein, we identified a highly reproducible jigsaw map of dysferlin fragments protected from digestion. Our data infer a modular architecture of four tertiary domains: 1) C2A, which is readily removed as a solo domain; 2) midregion C2B-C2C-Fer-DysF, commonly excised as an intact module, with subdigestion to different fragments suggesting several dynamic folding options; 3) C-terminal four-C2 domain module; and 4) calpain-cleaved mini-dysferlin, which is particularly resistant to proteolysis. Importantly, we reveal a patient missense variant, L344P, that largely escapes proteasomal surveillance and shows subtle but clear changes in tertiary conformation. Accompanying evidence from immunohistochemistry and flow cytometry using antibodies with conformationally sensitive epitopes supports proteolysis data. Collectively, we provide insight into the structural topology of dysferlin and show how a single missense mutation within dysferlin can exert local changes in tertiary conformation.
dysferlin是一种大型跨膜蛋白,在细胞膜修复中起关键作用,是隐性遗传性肌肉营养不良的基础。dysferlin病的特征是dysferlin蛋白缺失或显著减少,报告的致病变体中有43%是错义变体,分布在dysferlin蛋白的全长范围内。dysferlin具有独特的结构,由七个串联的C2结构域通过连接子隔开,这表明dysferlin可能响应钙信号而与磷脂膜动态结合。然而,dysferlin蛋白的整体构象尚未明确。为了解析dysferlin的结构架构,我们应用了有限蛋白酶解方法,该方法允许胰蛋白酶对未折叠的肽进行非特异性消化。使用跨越dysferlin蛋白的五种抗体,我们确定了一个高度可重复的dysferlin片段拼图图谱,这些片段受到保护不被消化。我们的数据推断出四个三级结构域的模块化架构:1)C2A,它很容易作为一个单独的结构域被去除;2)中间区域C2B-C2C-Fer-DysF,通常作为一个完整的模块被切除,亚消化成不同的片段表明有几种动态折叠选项;3)C端四个C2结构域模块;4)钙蛋白酶切割的微型dysferlin,它对蛋白酶解特别有抗性。重要的是,我们发现了一个患者错义变体L344P,它在很大程度上逃避了蛋白酶体的监测,并在三级构象中显示出细微但明显的变化。使用具有构象敏感表位的抗体进行免疫组织化学和流式细胞术的伴随证据支持了蛋白酶解数据。总体而言,我们深入了解了dysferlin的结构拓扑,并展示了dysferlin内的单个错义突变如何在三级构象中产生局部变化。