Májek Peter, Elber Ron
Department of Computer Science, Upson Hall 4130, Cornell University, Ithaca NY 14853-7501
J Chem Theory Comput. 2010;6(6):1805-1817. doi: 10.1021/ct100114j.
Milestoning is a method for calculating kinetics and thermodynamics of long time processes typically not accessible for straightforward Molecular Dynamics (MD) simulation. In the Milestoning approach, the system of interest is partitioned into cells by dividing hypersurfaces (Milestones) and transitions are computed between nearby hypersurfaces. Kinetics and thermodynamics are derived from the statistics of these transitions. The original Milestoning work concentrated on systems in which a one-dimensional reaction coordinate or an order parameter could be identified. In many biomolecular processes the reaction proceeds via multiple channels or following more than a single order parameter. A description based on a one-dimensional reaction coordinate may be insufficient. In the present paper we introduce a variation that overcomes this limitation.Following the ideas of Vanden-Eijnden and Venturoli on Voronoi cells that avoid the use of an order parameter (J. Chem. Phys. 2009, 130, 194101), we describe another way to "Milestone" systems without a reaction coordinate. We examine the assumptions of the Milestoning calculations of mean first passage times (MFPT) and describe strategies to weaken these assumptions. The method described in this paper, Directional Milestoning, arranges hypersurfaces in higher dimensions that "tag" trajectories such that efficient calculations can be done and at the same time the assumptions required for exact calculations of MFPTs are satisfied approximately.In the original Milestoning papers trajectories are initiated from an equilibrium set of conformations. Here a more accurate distribution, that mimics the first hitting point distribution, is used. We demonstrate the usage of Directional Milestoning in conformational transitions of alanine dipeptide (in vacuum and in aqueous solution) and compare the correctness, efficiency, and statistical stability of the method with exact MD and with a related method.
里程碑法是一种用于计算长时间过程的动力学和热力学的方法,这类过程通常无法通过直接的分子动力学(MD)模拟来实现。在里程碑法中,通过划分超曲面(里程碑)将感兴趣的系统划分为多个单元,并计算相邻超曲面之间的跃迁。动力学和热力学是从这些跃迁的统计数据中推导出来的。最初的里程碑法研究主要集中在可以确定一维反应坐标或序参量的系统上。在许多生物分子过程中,反应通过多个通道进行或遵循多个序参量。基于一维反应坐标的描述可能并不充分。在本文中,我们介绍了一种克服这一局限性的变体方法。遵循范登艾恩德(Vanden-Eijnden)和文图罗利(Venturoli)关于避免使用序参量的沃罗诺伊单元的思想(《化学物理杂志》,2009年,第130卷,第194101页),我们描述了另一种对没有反应坐标的系统进行“里程碑”处理的方法。我们研究了平均首次通过时间(MFPT)的里程碑计算的假设,并描述了弱化这些假设的策略。本文所描述的方法——定向里程碑法,在更高维度上排列超曲面,这些超曲面“标记”轨迹,以便能够进行高效计算,同时近似满足精确计算MFPT所需的假设。在最初的里程碑法论文中,轨迹是从一组平衡构象开始的。这里使用了一种更精确的分布,它模仿了首次命中点分布。我们展示了定向里程碑法在丙氨酸二肽(在真空和水溶液中)构象转变中的应用,并将该方法的正确性、效率和统计稳定性与精确的MD方法以及一种相关方法进行了比较。