Suppr超能文献

一种用于不同力学水平的小梁骨的适应模型。

An adaptation model for trabecular bone at different mechanical levels.

机构信息

Department of Orthopedic Surgery, No, 1 Hospital of Jilin University, Changchun 130021, China.

出版信息

Biomed Eng Online. 2010 Jul 2;9:32. doi: 10.1186/1475-925X-9-32.

Abstract

BACKGROUND

Bone has the ability to adapt to mechanical usage or other biophysical stimuli in terms of its mass and architecture, indicating that a certain mechanism exists for monitoring mechanical usage and controlling the bone's adaptation behaviors. There are four zones describing different bone adaptation behaviors: the disuse, adaptation, overload, and pathologic overload zones. In different zones, the changes of bone mass, as calculated by the difference between the amount of bone formed and what is resorbed, should be different.

METHODS

An adaptation model for the trabecular bone at different mechanical levels was presented in this study based on a number of experimental observations and numerical algorithms in the literature. In the proposed model, the amount of bone formation and the probability of bone remodeling activation were proposed in accordance with the mechanical levels. Seven numerical simulation cases under different mechanical conditions were analyzed as examples by incorporating the adaptation model presented in this paper with the finite element method.

RESULTS

The proposed bone adaptation model describes the well-known bone adaptation behaviors in different zones. The bone mass and architecture of the bone tissue within the adaptation zone almost remained unchanged. Although the probability of osteoclastic activation is enhanced in the overload zone, the potential of osteoblasts to form bones compensate for the osteoclastic resorption, eventually strengthening the bones. In the disuse zone, the disuse-mode remodeling removes bone tissue in disuse zone.

CONCLUSIONS

The study seeks to provide better understanding of the relationships between bone morphology and the mechanical, as well as biological environments. Furthermore, this paper provides a computational model and methodology for the numerical simulation of changes of bone structural morphology that are caused by changes of mechanical and biological environments.

摘要

背景

骨骼具有根据其质量和结构适应机械使用或其他生物物理刺激的能力,这表明存在一种监测机械使用并控制骨骼适应行为的特定机制。有四个区域描述了不同的骨骼适应行为:废用、适应、过载和病理性过载区域。在不同的区域中,通过形成的骨量与被吸收的骨量之间的差异来计算的骨量变化应该是不同的。

方法

本研究基于文献中的一些实验观察和数值算法,提出了一种用于不同力学水平的小梁骨的适应模型。在提出的模型中,根据力学水平提出了骨形成量和骨重塑激活概率。通过将本文提出的适应模型与有限元方法相结合,分析了 7 个不同力学条件下的数值模拟案例。

结果

提出的骨骼适应模型描述了不同区域中众所周知的骨骼适应行为。适应区域内的骨组织的骨量和结构几乎保持不变。虽然在过载区域中破骨细胞激活的概率增加,但成骨细胞形成骨骼的潜力弥补了破骨细胞的吸收,最终增强了骨骼。在废用区域中,废用模式重塑会去除废用区域内的骨组织。

结论

本研究旨在更好地理解骨骼形态与力学和生物环境之间的关系。此外,本文提供了一种用于模拟力学和生物环境变化引起的骨结构形态变化的计算模型和方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0aa/2903604/2299f26539ce/1475-925X-9-32-1.jpg

相似文献

1
An adaptation model for trabecular bone at different mechanical levels.
Biomed Eng Online. 2010 Jul 2;9:32. doi: 10.1186/1475-925X-9-32.
2
Trabecular architecture can remain intact for both disuse and overload enhanced resorption characteristics.
J Biomech. 2006;39(14):2631-7. doi: 10.1016/j.jbiomech.2005.08.018. Epub 2005 Oct 7.
3
Load adaptation through bone remodeling: a mechanobiological model coupled with the finite element method.
Biomech Model Mechanobiol. 2021 Aug;20(4):1495-1507. doi: 10.1007/s10237-021-01458-0. Epub 2021 Apr 26.
4
A theoretical framework for strain-related trabecular bone maintenance and adaptation.
J Biomech. 2005 Apr;38(4):931-41. doi: 10.1016/j.jbiomech.2004.03.037.
5
Effects of mechanical forces on maintenance and adaptation of form in trabecular bone.
Nature. 2000 Jun 8;405(6787):704-6. doi: 10.1038/35015116.
8
The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis.
Arch Biochem Biophys. 2008 May 15;473(2):117-23. doi: 10.1016/j.abb.2008.02.028. Epub 2008 Mar 4.
9
Proposal for the regulatory mechanism of Wolff's law.
J Orthop Res. 1995 Jul;13(4):503-12. doi: 10.1002/jor.1100130405.
10
A model of bone adaptation as an optimization process.
J Biomech. 2000 Nov;33(11):1349-57. doi: 10.1016/s0021-9290(00)00124-x.

引用本文的文献

1
Strategies for the Patient-Specific Implant Angle of Bone Scaffolds Using Optimization.
Tissue Eng Regen Med. 2025 Jun 13. doi: 10.1007/s13770-025-00730-z.
3
Microgravity Effects on the Matrisome.
Cells. 2021 Aug 27;10(9):2226. doi: 10.3390/cells10092226.
5
Biological basis of bone strength: anatomy, physiology and measurement.
J Musculoskelet Neuronal Interact. 2020 Sep 1;20(3):347-371.
6
The bone response in endurance long distance horse.
Open Vet J. 2019 Apr;9(1):58-64. doi: 10.4314/ovj.v9i1.11. Epub 2019 Mar 13.
9
The Influence of the Type of Continuous Exercise Stress Applied during Growth Periods on Bone Metabolism and Osteogenesis.
J Bone Metab. 2016 Aug;23(3):157-64. doi: 10.11005/jbm.2016.23.3.157. Epub 2016 Aug 31.

本文引用的文献

2
Computational simulation of trabecular adaptation progress in human proximal femur during growth.
J Biomech. 2009 Mar 26;42(5):573-80. doi: 10.1016/j.jbiomech.2008.12.009. Epub 2009 Feb 14.
3
Computational study of Wolff's law with trabecular architecture in the human proximal femur using topology optimization.
J Biomech. 2008 Aug 7;41(11):2353-61. doi: 10.1016/j.jbiomech.2008.05.037. Epub 2008 Jul 29.
5
Trabecular architecture can remain intact for both disuse and overload enhanced resorption characteristics.
J Biomech. 2006;39(14):2631-7. doi: 10.1016/j.jbiomech.2005.08.018. Epub 2005 Oct 7.
6
Trabecular bone microdamage and microstructural stresses under uniaxial compression.
J Biomech. 2005 Apr;38(4):707-16. doi: 10.1016/j.jbiomech.2004.05.013.
9
A theoretical analysis of the changes in basic multicellular unit activity at menopause.
Bone. 2003 Apr;32(4):357-63. doi: 10.1016/s8756-3282(03)00037-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验