Suppr超能文献

一种细胞类型特异性的蛋白质-蛋白质相互作用调节了新月柄杆菌中一个主调控因子的转录活性。

A cell-type-specific protein-protein interaction modulates transcriptional activity of a master regulator in Caulobacter crescentus.

机构信息

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Mol Cell. 2010 Aug 13;39(3):455-67. doi: 10.1016/j.molcel.2010.06.024. Epub 2010 Jul 1.

Abstract

Progression through the Caulobacter cell cycle is driven by the master regulator CtrA, an essential two-component signaling protein that regulates the expression of nearly 100 genes. CtrA is abundant throughout the cell cycle except immediately prior to DNA replication. However, the expression of CtrA-activated genes is generally restricted to S phase. We identify the conserved protein SciP (small CtrA inhibitory protein) and show that it accumulates during G1, where it inhibits CtrA from activating target genes. The depletion of SciP from G1 cells leads to the inappropriate induction of CtrA-activated genes and, consequently, a disruption of the cell cycle. Conversely, the ectopic synthesis of SciP is sufficient to inhibit CtrA-dependent transcription, also disrupting the cell cycle. SciP binds directly to CtrA without affecting stability or phosphorylation; instead, SciP likely prevents CtrA from recruiting RNA polymerase. CtrA is thus tightly regulated by a protein-protein interaction which is critical to cell-cycle progression.

摘要

钙粘球菌细胞周期的进展由主调控因子 CtrA 驱动,CtrA 是一种必需的双组分信号蛋白,它调节近 100 个基因的表达。CtrA 在细胞周期中大量存在,除了在 DNA 复制之前。然而,CtrA 激活基因的表达通常局限于 S 期。我们鉴定了保守蛋白 SciP(小 CtrA 抑制蛋白),并表明它在 G1 期积累,在那里它抑制 CtrA 激活靶基因。从 G1 期细胞中耗尽 SciP 会导致 CtrA 激活基因的不当诱导,从而破坏细胞周期。相反,SciP 的异位合成足以抑制 CtrA 依赖性转录,也会破坏细胞周期。SciP 直接与 CtrA 结合,而不影响稳定性或磷酸化;相反,SciP 可能阻止 CtrA 招募 RNA 聚合酶。因此,CtrA 受到一种对细胞周期进展至关重要的蛋白质-蛋白质相互作用的严格调控。

相似文献

1
2
The Caulobacter crescentus ctrA P1 promoter is essential for the coordination of cell cycle events that prevent the overinitiation of DNA replication.
Microbiology (Reading). 2012 Oct;158(Pt 10):2492-2503. doi: 10.1099/mic.0.055285-0. Epub 2012 Jul 12.
4
An essential transcription factor, SciP, enhances robustness of Caulobacter cell cycle regulation.
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18985-90. doi: 10.1073/pnas.1014395107. Epub 2010 Oct 18.
6
Convergence of alarmone and cell cycle signaling from trans-encoded sensory domains.
mBio. 2015 Oct 20;6(5):e01415-15. doi: 10.1128/mBio.01415-15.
8
Regulated proteolysis of a transcription factor complex is critical to cell cycle progression in Caulobacter crescentus.
Mol Microbiol. 2013 Mar;87(6):1277-89. doi: 10.1111/mmi.12166. Epub 2013 Feb 25.
9
DnaA coordinates replication initiation and cell cycle transcription in Caulobacter crescentus.
Mol Microbiol. 2005 Dec;58(5):1340-53. doi: 10.1111/j.1365-2958.2005.04912.x.

引用本文的文献

1
Disrupting NtrC function reveals unexpected robustness in a central cell cycle regulatory network.
mBio. 2025 Sep 10;16(9):e0196225. doi: 10.1128/mbio.01962-25. Epub 2025 Aug 18.
2
Upstream CtrA-binding sites both induce and repress pilin gene expression in Caulobacter crescentus.
BMC Genomics. 2024 Jul 19;25(1):703. doi: 10.1186/s12864-024-10533-6.
3
MucR protein: Three decades of studies have led to the identification of a new H-NS-like protein.
Mol Microbiol. 2025 Feb;123(2):154-167. doi: 10.1111/mmi.15261. Epub 2024 Apr 15.
4
The heat shock protein LarA activates the Lon protease in response to proteotoxic stress.
Nat Commun. 2023 Nov 22;14(1):7636. doi: 10.1038/s41467-023-43385-x.
5
The NtrB-NtrC two-component system bridges nitrogen assimilation and cell development.
J Bacteriol. 2023 Oct 26;205(10):e0018123. doi: 10.1128/jb.00181-23. Epub 2023 Oct 4.
6
The NtrB-NtrC two-component system bridges nitrogen assimilation and cell development.
bioRxiv. 2023 Aug 31:2023.06.06.543975. doi: 10.1101/2023.06.06.543975.
7
Synchronized Swarmers and Sticky Stalks: Caulobacter crescentus as a Model for Bacterial Cell Biology.
J Bacteriol. 2023 Feb 22;205(2):e0038422. doi: 10.1128/jb.00384-22. Epub 2023 Jan 30.
9
Proteolysis dependent cell cycle regulation in Caulobacter crescentus.
Cell Div. 2022 Apr 1;17(1):3. doi: 10.1186/s13008-022-00078-z.
10
The noncoding RNA CcnA modulates the master cell cycle regulators CtrA and GcrA in Caulobacter crescentus.
PLoS Biol. 2022 Feb 22;20(2):e3001528. doi: 10.1371/journal.pbio.3001528. eCollection 2022 Feb.

本文引用的文献

1
Dynamics of two Phosphorelays controlling cell cycle progression in Caulobacter crescentus.
J Bacteriol. 2009 Dec;191(24):7417-29. doi: 10.1128/JB.00992-09. Epub 2009 Sep 25.
3
Systems biology of Caulobacter.
Annu Rev Genet. 2007;41:429-41. doi: 10.1146/annurev.genet.41.110306.130346.
4
Specificity in two-component signal transduction pathways.
Annu Rev Genet. 2007;41:121-45. doi: 10.1146/annurev.genet.41.042007.170548.
5
Control and regulation of KplE1 prophage site-specific recombination: a new recombination module analyzed.
J Biol Chem. 2007 Jul 27;282(30):21798-809. doi: 10.1074/jbc.M701827200. Epub 2007 May 31.
6
Regulation of the bacterial cell cycle by an integrated genetic circuit.
Nature. 2006 Dec 14;444(7121):899-904. doi: 10.1038/nature05321. Epub 2006 Nov 29.
8
A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus.
Mol Microbiol. 2006 Jan;59(2):386-401. doi: 10.1111/j.1365-2958.2005.04970.x.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验