Suppr超能文献

利用粪便指示菌和重金属的空间数据将土地利用类型与河流水质联系起来:以荣山江流域为例。

Linking land-use type and stream water quality using spatial data of fecal indicator bacteria and heavy metals in the Yeongsan river basin.

机构信息

Department of Civil and Environmental Systems Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea.

出版信息

Water Res. 2010 Jul;44(14):4143-57. doi: 10.1016/j.watres.2010.05.009. Epub 2010 Jun 4.

Abstract

This study reveals land-use factors that explain stream water quality during wet and dry weather conditions in a large river basin using two different linear models-multiple linear regression (MLR) models and constrained least squares (CLS) models. Six land-use types and three topographical parameters (size, slope, and permeability) of the watershed were incorporated into the models as explanatory variables. The suggested models were then demonstrated using a digitized elevation map in conjunction with the land-use and the measured concentration data for Escherichia coli (EC), Enterococci bacteria (ENT), and six heavy metal species collected monthly during 2007-2008 at 50 monitoring sites in the Yeongsan Watershed, Korea. The results showed that the MLR models can be a powerful tool for predicting the average concentrations of pollutants in stream water (the Nash-Sutcliffe (NS) model efficiency coefficients ranged from 0.67 to 0.95). On the other hand, the CLS models, with moderately good prediction performance (the NS coefficients ranged 0.28-0.85), were more suitable for quantifying contributions of respective land-uses to the stream water quality. The CLS models suggested that industrial and urban land-uses are major contributors to the stream concentrations of EC and ENT, whereas agricultural, industrial, and mining areas were significant sources of many heavy metal species. In addition, the slope, size, and permeability of the watershed were found to be important factors determining the extent of the contribution from each land-use type to the stream water quality. The models proposed in this paper can be considered useful tools for developing land cover guidelines and for prioritizing locations for implementing management practices to maintain stream water quality standard in a large river basin.

摘要

本研究采用两种不同的线性模型——多元线性回归(MLR)模型和约束最小二乘法(CLS)模型,揭示了大流域中干湿天气条件下解释溪流水质的土地利用因素。将流域的六种土地利用类型和三种地形参数(大小、坡度和渗透性)作为解释变量纳入模型。然后,使用数字化高程图以及土地利用和 2007-2008 年期间每月在韩国良才流域 50 个监测点测量的大肠杆菌(EC)、肠球菌(ENT)和六种重金属浓度数据,对提出的模型进行了验证。结果表明,MLR 模型可以成为预测溪流水中污染物平均浓度的有力工具(纳什-苏特克利夫(NS)模型效率系数范围为 0.67 至 0.95)。另一方面,CLS 模型具有较好的预测性能(NS 系数范围为 0.28-0.85),更适合量化各自土地利用对溪流水质的贡献。CLS 模型表明,工业和城市土地利用是 EC 和 ENT 溪流浓度的主要贡献者,而农业、工业和采矿区是许多重金属的重要来源。此外,流域的坡度、大小和渗透性被发现是决定每个土地利用类型对溪流水质贡献程度的重要因素。本文提出的模型可以被认为是制定土地覆盖指南和确定实施管理实践优先位置以维持大流域溪流水质标准的有用工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验