Department of Biomedical Physics, Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warszawa, Poland.
J Theor Biol. 2010 Oct 7;266(3):380-90. doi: 10.1016/j.jtbi.2010.06.028. Epub 2010 Jul 1.
In this article we discuss the short-term synaptic depression using a mathematical model. We derive the model of synaptic depression caused by the depletion of synaptic vesicles for the case of infinitely short stimulation time and show that the analytical formulas for the postsynaptic potential (PSP) and kinetic functions take simple closed form. A solution in this form allows an analysis of the characteristics of depression as a function of the models parameters and the derivation of analytic formulas for measures of short time synaptic depression commonly used in experimental studies. Those formulas are used to validate the model by fitting it to two types of synapses described in the literature. Given the fitted parameters we discuss the behavior of the synapse in situations involving frequency change. We also indicate a possible role of depressing synapses in information processing as not only a filter of high frequency input but as a detector of the return from high frequency stimulation to the stimulation within frequency band specific for a given synapse.
在本文中,我们使用数学模型讨论短期突触抑制。我们推导了在无限短刺激时间下由突触小泡耗竭引起的突触抑制模型,并表明用于突触后电位 (PSP) 和动力学函数的解析公式采用简单的封闭形式。这种形式的解允许分析作为模型参数函数的抑制特性,并推导出实验研究中常用的短期突触抑制度量的解析公式。这些公式用于通过将其拟合到文献中描述的两种类型的突触来验证模型。根据拟合参数,我们讨论了在涉及频率变化的情况下突触的行为。我们还指出,抑制性突触在信息处理中可能不仅作为高频输入的滤波器,而且作为检测从高频刺激返回至特定于给定突触的频带内刺激的检测器。