Heuston Elisabeth, Bronner C Eric, Kull F Jon, Endow Sharyn A
Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
BMC Struct Biol. 2010 Jul 5;10:19. doi: 10.1186/1472-6807-10-19.
Kinesin motors hydrolyze ATP to produce force and move along microtubules, converting chemical energy into work by a mechanism that is only poorly understood. Key transitions and intermediate states in the process are still structurally uncharacterized, and remain outstanding questions in the field. Perturbing the motor by introducing point mutations could stabilize transitional or unstable states, providing critical information about these rarer states.
Here we show that mutation of a single residue in the kinesin-14 Ncd causes the motor to release ADP and hydrolyze ATP faster than wild type, but move more slowly along microtubules in gliding assays, uncoupling nucleotide hydrolysis from force generation. A crystal structure of the motor shows a large rotation of the stalk, a conformation representing a force-producing stroke of Ncd. Three C-terminal residues of Ncd, visible for the first time, interact with the central beta-sheet and dock onto the motor core, forming a structure resembling the kinesin-1 neck linker, which has been proposed to be the primary force-generating mechanical element of kinesin-1.
Force generation by minus-end Ncd involves docking of the C-terminus, which forms a structure resembling the kinesin-1 neck linker. The mechanism by which the plus- and minus-end motors produce force to move to opposite ends of the microtubule appears to involve the same conformational changes, but distinct structural linkers. Unstable ADP binding may destabilize the motor-ADP state, triggering Ncd stalk rotation and C-terminus docking, producing a working stroke of the motor.
驱动蛋白通过水解三磷酸腺苷(ATP)产生力并沿微管移动,其将化学能转化为功的机制仍鲜为人知。该过程中的关键转变和中间状态在结构上仍未得到表征,仍是该领域悬而未决的问题。通过引入点突变来扰动驱动蛋白可能会稳定过渡态或不稳定态,从而提供有关这些罕见状态的关键信息。
我们在此表明,驱动蛋白-14 Ncd中单个残基的突变导致该驱动蛋白比野生型更快地释放二磷酸腺苷(ADP)并水解ATP,但在滑行试验中沿微管移动得更慢,从而使核苷酸水解与力的产生解偶联。该驱动蛋白的晶体结构显示,其柄部发生了大幅旋转,这是一种代表Ncd产生力冲程的构象。首次可见的Ncd的三个C端残基与中央β折叠相互作用,并对接至驱动蛋白核心,形成一种类似于驱动蛋白-1颈部连接体的结构,而驱动蛋白-1颈部连接体被认为是驱动蛋白-1产生力的主要机械元件。
负端Ncd产生力涉及C端的对接,其形成了一种类似于驱动蛋白-1颈部连接体的结构。正端和负端驱动蛋白产生力以移向微管两端的机制似乎涉及相同的构象变化,但结构连接体不同。不稳定的ADP结合可能会使驱动蛋白-ADP状态不稳定,触发Ncd柄部旋转和C端对接,从而产生驱动蛋白的工作冲程。