Suppr超能文献

TUBA1A 中的疾病相关突变导致微管蛋白折叠和异二聚体组装途径的一系列缺陷。

Disease-associated mutations in TUBA1A result in a spectrum of defects in the tubulin folding and heterodimer assembly pathway.

机构信息

Department of Biochemistry, NYU Langone Medical Center, New York, NY 10016, USA.

出版信息

Hum Mol Genet. 2010 Sep 15;19(18):3599-613. doi: 10.1093/hmg/ddq276. Epub 2010 Jul 5.

Abstract

Malformations of cortical development are characteristic of a plethora of diseases that includes polymicrogyria, periventricular and subcortical heterotopia and lissencephaly. Mutations in TUBA1A and TUBB2B, each a member of the multigene families that encode alpha- and beta-tubulins, have recently been implicated in these diseases. Here we examine the defects that result from nine disease-causing mutations (I188L, I238V, P263T, L286F, V303G, L397P, R402C, 402H, S419L) in TUBA1A. We show that the expression of all the mutant proteins in vitro results in the generation of tubulin heterodimers in varying yield and that these can co-polymerize with microtubules in vitro. We identify several kinds of defects that result from these mutations. Among these are various defects in the chaperone-dependent pathway leading to de novo tubulin heterodimer formation. These include a defective interaction with the chaperone prefoldin, a reduced efficiency in the generation of productive folding intermediates as a result of inefficient interaction with the cytosolic chaperonin, CCT, and, in several cases, a failure to stably interact with TBCB, one of five tubulin-specific chaperones that act downstream of CCT in the tubulin heterodimer assembly pathway. Other defects include structural instability in vitro, diminished stability in vivo, a compromised ability to co-assemble with microtubules in vivo and a suppression of microtubule growth rate in the neurites (but not the soma) of cultured neurons. Our data are consistent with the notion that some mutations in TUBA1A result in tubulin deficit, whereas others reflect compromised interactions with one or more MAPs that are essential to proper neuronal migration.

摘要

皮质发育畸形是多种疾病的特征,包括多微小脑回、脑室周围和皮质下异位和无脑回畸形。TUBA1A 和 TUBB2B 的突变,这两种突变分别是编码α-和β-微管蛋白的多基因家族的成员,最近被牵连到这些疾病中。在这里,我们研究了 TUBA1A 中的九个致病突变(I188L、I238V、P263T、L286F、V303G、L397P、R402C、402H、S419L)导致的缺陷。我们表明,所有突变蛋白在体外的表达都会产生不同产量的微管蛋白异二聚体,并且这些异二聚体可以在体外与微管共聚合。我们确定了这些突变导致的几种缺陷。其中包括在依赖伴侣的途径中导致新的微管蛋白异二聚体形成的各种缺陷。这些缺陷包括与伴侣蛋白 Prefoldin 的相互作用缺陷、与胞质伴侣蛋白 CCT 的相互作用效率低下导致产生有活性的折叠中间产物的效率降低,以及在几种情况下,无法与 TBCB 稳定相互作用,TBCB 是五个微管蛋白特异性伴侣蛋白之一,在微管蛋白异二聚体组装途径中,它位于 CCT 的下游。其他缺陷包括体外结构不稳定、体内稳定性降低、与微管在体内共组装的能力受损以及对培养神经元的神经突(而非胞体)中微管生长速度的抑制。我们的数据与以下观点一致,即 TUBA1A 中的一些突变导致微管蛋白缺乏,而其他突变则反映了与一个或多个 MAP 的相互作用受损,而这些 MAP 对于正确的神经元迁移是必不可少的。

相似文献

1
Disease-associated mutations in TUBA1A result in a spectrum of defects in the tubulin folding and heterodimer assembly pathway.
Hum Mol Genet. 2010 Sep 15;19(18):3599-613. doi: 10.1093/hmg/ddq276. Epub 2010 Jul 5.
2
A pachygyria-causing alpha-tubulin mutation results in inefficient cycling with CCT and a deficient interaction with TBCB.
Mol Biol Cell. 2008 Mar;19(3):1152-61. doi: 10.1091/mbc.e07-09-0861. Epub 2008 Jan 16.
3
Overlapping cortical malformations and mutations in TUBB2B and TUBA1A.
Brain. 2013 Feb;136(Pt 2):536-48. doi: 10.1093/brain/aws338. Epub 2013 Jan 29.
7
Expanding the spectrum of TUBA1A-related cortical dysgenesis to Polymicrogyria.
Eur J Hum Genet. 2013 Apr;21(4):381-5. doi: 10.1038/ejhg.2012.195. Epub 2012 Sep 5.
8
Mutation of the α-tubulin Tuba1a leads to straighter microtubules and perturbs neuronal migration.
J Cell Biol. 2017 Aug 7;216(8):2443-2461. doi: 10.1083/jcb.201607074. Epub 2017 Jul 7.
9
Insights on the Role of α- and β-Tubulin Isotypes in Early Brain Development.
Mol Neurobiol. 2023 Jul;60(7):3803-3823. doi: 10.1007/s12035-023-03302-1. Epub 2023 Mar 21.
10
Recognizable cerebellar dysplasia associated with mutations in multiple tubulin genes.
Hum Mol Genet. 2015 Sep 15;24(18):5313-25. doi: 10.1093/hmg/ddv250. Epub 2015 Jun 30.

引用本文的文献

1
The tubulin database: Linking mutations, modifications, ligands and local interactions.
PLoS One. 2023 Dec 8;18(12):e0295279. doi: 10.1371/journal.pone.0295279. eCollection 2023.
2
Case report: Structural brain abnormalities in -tubulinopathies: a narrative review.
Front Pediatr. 2023 Sep 8;11:1210272. doi: 10.3389/fped.2023.1210272. eCollection 2023.
3
MAPping tubulin mutations.
Front Cell Dev Biol. 2023 Feb 15;11:1136699. doi: 10.3389/fcell.2023.1136699. eCollection 2023.
4
The molecular biology of tubulinopathies: Understanding the impact of variants on tubulin structure and microtubule regulation.
Front Cell Neurosci. 2022 Nov 2;16:1023267. doi: 10.3389/fncel.2022.1023267. eCollection 2022.
6
Functional Investigation of TUBB4A Variants Associated with Different Clinical Phenotypes.
Mol Neurobiol. 2022 Aug;59(8):5056-5069. doi: 10.1007/s12035-022-02900-9. Epub 2022 Jun 6.
7
Bridging the Gap: The Importance of TUBA1A α-Tubulin in Forming Midline Commissures.
Front Cell Dev Biol. 2022 Jan 19;9:789438. doi: 10.3389/fcell.2021.789438. eCollection 2021.
8
Kinetically Stabilizing Mutations in Beta Tubulins Create Isotype-Specific Brain Malformations.
Front Cell Dev Biol. 2021 Nov 18;9:765992. doi: 10.3389/fcell.2021.765992. eCollection 2021.
9
A comprehensive analysis of prefoldins and their implication in cancer.
iScience. 2021 Oct 15;24(11):103273. doi: 10.1016/j.isci.2021.103273. eCollection 2021 Nov 19.
10
Loss-of-Function Plays a Major Role in Early Neurogenesis of Tubulin α-1 A (TUBA1A) Mutation-Related Brain Malformations.
Mol Neurobiol. 2021 Apr;58(4):1291-1302. doi: 10.1007/s12035-020-02193-w. Epub 2020 Nov 9.

本文引用的文献

1
Key residues on microtubule responsible for activation of kinesin ATPase.
EMBO J. 2010 Apr 7;29(7):1167-75. doi: 10.1038/emboj.2010.25. Epub 2010 Mar 11.
2
Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance.
Cell. 2010 Jan 8;140(1):74-87. doi: 10.1016/j.cell.2009.12.011.
3
Mutation of the variant alpha-tubulin TUBA8 results in polymicrogyria with optic nerve hypoplasia.
Am J Hum Genet. 2009 Nov;85(5):737-44. doi: 10.1016/j.ajhg.2009.10.007. Epub 2009 Nov 5.
4
Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects.
Trends Genet. 2009 Dec;25(12):555-66. doi: 10.1016/j.tig.2009.10.003. Epub 2009 Oct 26.
5
Emerging roles for myosin II and cytoplasmic dynein in migrating neurons and growth cones.
Trends Cell Biol. 2009 Jul;19(7):347-55. doi: 10.1016/j.tcb.2009.03.009. Epub 2009 Jun 11.
6
Establishment of axon-dendrite polarity in developing neurons.
Annu Rev Neurosci. 2009;32:347-81. doi: 10.1146/annurev.neuro.31.060407.125536.
8
Refinement of cortical dysgeneses spectrum associated with TUBA1A mutations.
J Med Genet. 2008 Oct;45(10):647-53. doi: 10.1136/jmg.2008.058073. Epub 2008 Aug 26.
9
Neuropathological phenotype of a distinct form of lissencephaly associated with mutations in TUBA1A.
Brain. 2008 Sep;131(Pt 9):2304-20. doi: 10.1093/brain/awn155. Epub 2008 Jul 18.
10
De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy.
Nat Genet. 2008 Jun;40(6):782-8. doi: 10.1038/ng.150. Epub 2008 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验