Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
J Phys Chem A. 2010 Jul 29;114(29):7693-708. doi: 10.1021/jp101159h.
Association of alkyl radicals with ground-state oxygen (3)Sigma(g)(+)(O(2)) generates chemically activated peroxy intermediates, which can isomerize or further react to form new products before collisional stabilization. The lowest-energy reaction (approximately 19 kcal mol(-1)) for alkylperoxy derivatives of C(3) and larger n-hydrocarbons is an isomerization (intramolecular H-atom transfer) that forms a hydroperoxide alkyl radical, and there is a approximately 30 kcal mol(-1) barrier path to olefin plus HO(2), which is a termination step at lower temperatures. The low-energy-barrier product, hydroperoxide alkyl radical intermediate, can experience additional chemical activation via association with a second oxygen molecule, where there are three important paths that result in chain branching. The competition between this HO(2) + olefin termination step of the first O(2) association and the chain branching processes from the second chemical activation step plays a dominant role at temperatures below 1000 K. Secondary n-pentyl radicals are used in this study as surrogates to analyze the thermochemistry and detailed kinetics of the chemical activation and stabilized adduct reactions important to chain branching and termination. As these radicals provide six- member ring transition states for H-atom transfer between secondary carbons, they represent the detailed kinetics of larger alkane radicals, such as the common fuel components n-heptane and n-decane. Comprehensive potential energy diagrams developed from multilevel CBS-QB3, G3MP2, and CBS-APNO and single-level ab initio and density functional theory methods are used to analyze secondary 2-pentyl (n-pentan-2-yl) and interrelated 2-hydroperoxide-pentan-4-yl radical interactions with O(2). The thermochemistry and kinetics of the chemical activation and stabilized adduct reactions important to chain branching and termination are reported and discussed. Results show that the chain branching reactions have faster kinetics in this system because the barriers are lower than those observed in ethyl and propyl radical plus O(2) reactions; consequently, the branching is predicted to be more important. The lower barriers for branching result in less competition from the termination (HO(2) + olefin) path in this larger radical. Several nontraditional reaction channels not previously considered in the literature are identified. A pathway is suggested to explain the formation of a unique trioxane product observed experimentally.
烷基自由基与基态氧(3)Σ(g)(+)(O2)结合生成化学活性过氧中间体,这些中间体在碰撞稳定化之前可以异构化或进一步反应形成新产物。C3 和更大的 n-烃类烷基过氧衍生物的最低能反应(约 19 kcal mol-1)是一种异构化(分子内 H 原子转移),形成过氧烷基自由基,并且存在大约 30 kcal mol-1 的烯烃加 HO2 势垒路径,这是较低温度下的终止步骤。低能垒产物,过氧烷基自由基中间体,可以通过与第二个氧分子结合经历额外的化学激活,其中有三个重要的路径导致链分支。第一个 O2 结合的 HO2 + 烯烃终止步骤和第二个化学激活步骤的链分支过程之间的竞争在 1000 K 以下的温度下起着主导作用。在这项研究中,使用仲戊基自由基作为替代品来分析对链分支和终止很重要的化学激活和稳定加合物反应的热化学和详细动力学。由于这些自由基为仲碳原子之间的 H 原子转移提供了六元环过渡态,因此它们代表了较大烷烃自由基的详细动力学,例如常见燃料成分正庚烷和正癸烷。从多层次 CBS-QB3、G3MP2 和 CBS-APNO 以及单水平从头算和密度泛函理论方法开发的综合势能图用于分析仲 2-戊基(正戊烷-2-基)和相关的 2-过氧戊基-4-基自由基与 O2 的相互作用。报告并讨论了对链分支和终止很重要的化学激活和稳定加合物反应的热化学和动力学。结果表明,由于该体系中的壁垒低于乙基和丙基自由基加 O2 反应中的壁垒,因此链分支反应具有更快的动力学;因此,预计分支更重要。较低的分支壁垒导致该较大自由基中终止(HO2 + 烯烃)路径的竞争减少。确定了几个以前在文献中没有考虑过的非传统反应通道。提出了一种途径来解释实验中观察到的独特三氧杂环己烷产物的形成。