Institute for Chemical Technology, University of Karlsruhe, Karlsruhe, Germany.
J Phys Chem A. 2011 Feb 17;115(6):1018-26. doi: 10.1021/jp1072439. Epub 2011 Jan 25.
The resonantly stabilized radical i-C(4)H(5) (CH(2)CCHCH(2)) is an important intermediate in the combustion of unsaturated hydrocarbons and is thought to be involved in the formation of polycyclic aromatic hydrocarbons through its reaction with acetylene (C(2)H(2)) to form benzene + H. This study uses quantum chemistry and statistical reaction rate theory to investigate the mechanism and kinetics of the i-C(4)H(5) + O(2) reaction as a function of temperature and pressure, and unlike most resonantly stabilized radicals we show that i-C(4)H(5) is consumed relatively rapidly by its reaction with molecular oxygen. O(2) addition occurs at the vinylic and allenic radical sites in i-C(4)H(5), with respective barriers of 0.9 and 4.9 kcal mol(-1). Addition to the allenic radical form produces an allenemethylperoxy radical adduct with only around 20 kcal mol(-1) excess vibrational energy. This adduct can isomerize to the ca. 14 kcal mol(-1) more stable 1,3-divinyl-2-peroxy radical via concerted and stepwise processes, both steps with barriers around 10 kcal mol(-1) below the entrance channel energy. Addition of O(2) to the vinylic radical site in i-C(4)H(5) directly forms the 1,3-divinyl-2-peroxy radical with a small barrier and around 36.8 kcal mol(-1) of excess energy. The 1,3-divinyl-2-peroxy radical isomerizes via ipso addition of the O(2) moiety followed by O atom insertion into the adjacent C-C bond. This process forms an unstable intermediate that ultimately dissociates to give the vinyl radical, formaldehyde, and CO. At higher temperatures formation of vinylacetylene + HO(2), the vinoxyl radical + ketene, and the 1,3-divinyl-2-oxyl radical + O paths have some importance. Because of the adiabatic transition states for O(2) addition, and significant reverse dissociation channels in the peroxy radical adducts, the i-C(4)H(5) + O(2) reaction proceeds to new products with rate constant of around 10(11) cm(3) mol(-1) s(-1) at typical combustion temperatures (1000-2000 K). For fuel-rich flames we show that the reaction of i-C(4)H(5) with O(2) is likely to be faster than that with C(2)H(2), bringing into question the importance of the i-C(4)H(5) + C(2)H(2) reaction in initiating ring formation in sooting flames.
共振稳定自由基 i-C(4)H(5)(CH(2)CCHCH(2)) 是不饱和烃燃烧过程中的一个重要中间体,它被认为通过与乙炔 (C(2)H(2)) 反应形成苯 + H 而参与多环芳烃的形成。本研究使用量子化学和统计反应速率理论研究了 i-C(4)H(5)+O(2)反应的机制和动力学,作为温度和压力的函数,与大多数共振稳定自由基不同,我们表明 i-C(4)H(5) 通过与分子氧的反应相对较快地消耗。O(2)加成发生在 i-C(4)H(5)的乙烯基和 allenic 自由基位点,相应的势垒分别为 0.9 和 4.9 kcal mol(-1)。与 allenic 自由基形式的加成生成具有约 20 kcal mol(-1)过剩振动能的 allenemethylperoxy 自由基加合物。该加合物可以通过协同和逐步过程异构化为约 14 kcal mol(-1)更稳定的 1,3-二乙烯基-2-过氧自由基,这两个步骤的势垒均低于入口通道能量约 10 kcal mol(-1)。O(2)加成到 i-C(4)H(5)中的乙烯基自由基位点直接形成具有小势垒和约 36.8 kcal mol(-1)过剩能量的 1,3-二乙烯基-2-过氧自由基。1,3-二乙烯基-2-过氧自由基通过 O 部分的 ipso 添加异构化为随后的 O 原子插入相邻的 C-C 键。该过程形成不稳定的中间体,最终分解为乙烯基自由基、甲醛和 CO。在较高温度下,形成乙烯基乙炔 + HO(2)、vinoxyl 自由基 + 烯酮和 1,3-二乙烯基-2-氧自由基 + O 路径具有一定的重要性。由于 O(2)加成的绝热过渡态和过氧自由基加合物中显著的反向解离通道,i-C(4)H(5)+O(2)反应在典型的燃烧温度 (1000-2000 K) 下以约 10(11)cm(3)mol(-1)s(-1)的速率常数进行到新产物。对于富燃料火焰,我们表明 i-C(4)H(5)与 O(2)的反应可能比与 C(2)H(2)的反应更快,这使得 i-C(4)H(5)+C(2)H(2)反应在引发 soot 火焰中环形成的重要性受到质疑。