Suppr超能文献

评估 Tyrer-Cuzick(国际乳腺癌干预研究)模型在不典型增生女性中的乳腺癌风险预测能力。

Evaluation of the Tyrer-Cuzick (International Breast Cancer Intervention Study) model for breast cancer risk prediction in women with atypical hyperplasia.

机构信息

Mayo Clinic, Rochester, MN 55905, USA.

出版信息

J Clin Oncol. 2010 Aug 1;28(22):3591-6. doi: 10.1200/JCO.2010.28.0784. Epub 2010 Jul 6.

Abstract

PURPOSE

Accurate breast cancer risk assessment is vital to personalize screening and risk reduction strategies. Women with atypical hyperplasia have a four-fold higher risk of breast cancer. We evaluated the performance of the Tyrer-Cuzick model, which was designed to predict 10-year risk of breast cancer development, in a well-defined cohort of women with atypia.

PATIENTS AND METHODS

The Mayo Benign Breast Disease cohort includes 9,376 women who had a benign breast biopsy between 1967 and 1991. Among those, 331 women with atypia were identified by our study pathologists. Risk factor data for the Tyrer-Cuzick model were collated for each woman and used to predict individual risk of developing invasive breast cancer within 10 years.

RESULTS

Over a median follow-up of 14.6 years, 64 (19%) of the 331 women developed invasive breast cancer. In the first 10 years after biopsy, 31 women developed invasive breast cancer whereas the Tyrer-Cuzick model predicted 58.9. The observed-to-predicted ratio was 0.53 (95% CI, 0.37 to 0.75). The concordance statistic was 0.540, revealing that the Tyrer-Cuzick model did not accurately distinguish, on an individual level, between women who developed invasive breast cancer and those who did not.

CONCLUSION

The Tyrer-Cuzick model significantly overestimated risk of breast cancer for women with atypia, and individual risk estimates showed poor concordance between predicted risk and invasive breast cancer development. Thus, we cannot recommend the use of the Tyrer-Cuzick model to predict 10-year breast cancer risk in women with atypical hyperplasia.

摘要

目的

准确的乳腺癌风险评估对于制定个性化的筛查和降低风险策略至关重要。患有非典型性增生的女性乳腺癌风险增加四倍。我们评估了 Tyrer-Cuzick 模型的性能,该模型旨在预测 10 年内乳腺癌发展的风险,该模型应用于一组明确诊断为非典型性增生的女性。

方法

梅奥良性乳腺疾病队列包括 9376 名在 1967 年至 1991 年间接受良性乳腺活检的女性。其中,我们的研究病理学家确定了 331 名患有非典型性增生的女性。为每位女性收集了 Tyrer-Cuzick 模型的风险因素数据,并用于预测在 10 年内发生浸润性乳腺癌的个体风险。

结果

在中位随访 14.6 年期间,331 名女性中有 64 名(19%)发展为浸润性乳腺癌。在活检后的前 10 年内,有 31 名女性发展为浸润性乳腺癌,而 Tyrer-Cuzick 模型预测为 58.9。观察到的与预测到的比值为 0.53(95%CI,0.37 至 0.75)。一致性统计量为 0.540,表明 Tyrer-Cuzick 模型不能在个体水平上准确区分发生浸润性乳腺癌和未发生浸润性乳腺癌的女性。

结论

Tyrer-Cuzick 模型显著高估了非典型性增生女性的乳腺癌风险,个体风险估计值在预测风险与浸润性乳腺癌发展之间的一致性较差。因此,我们不能推荐使用 Tyrer-Cuzick 模型来预测患有非典型性增生的女性 10 年内的乳腺癌风险。

相似文献

2
Long-term Accuracy of Breast Cancer Risk Assessment Combining Classic Risk Factors and Breast Density.
JAMA Oncol. 2018 Sep 1;4(9):e180174. doi: 10.1001/jamaoncol.2018.0174. Epub 2018 Sep 13.
3
The Tyrer-Cuzick Model Inaccurately Predicts Invasive Breast Cancer Risk in Women With LCIS.
Ann Surg Oncol. 2020 Mar;27(3):736-740. doi: 10.1245/s10434-019-07814-w. Epub 2019 Sep 26.
4
Performance of the IBIS/Tyrer-Cuzick model of breast cancer risk by race and ethnicity in the Women's Health Initiative.
Cancer. 2021 Oct 15;127(20):3742-3750. doi: 10.1002/cncr.33767. Epub 2021 Jul 6.
9
Reassessing risk models for atypical hyperplasia: age may not matter.
Breast Cancer Res Treat. 2017 Sep;165(2):285-291. doi: 10.1007/s10549-017-4320-7. Epub 2017 Jun 6.
10
Comparative Analysis between the Gail, Tyrer-Cuzick and BRCAPRO Models for Breast Cancer Screening in Brazilian Population.
Asian Pac J Cancer Prev. 2019 Nov 1;20(11):3407-3413. doi: 10.31557/APJCP.2019.20.11.3407.

引用本文的文献

2
Current insights into breast and ovarian cancer risk: a contemporary review.
Minerva Surg. 2025 Aug;80(4):334-353. doi: 10.23736/S2724-5691.25.10651-5.
3
Development and performance of female breast cancer incidence risk prediction models: a systematic review and meta-analysis.
Ann Med. 2025 Dec;57(1):2534522. doi: 10.1080/07853890.2025.2534522. Epub 2025 Jul 20.
4
A systematic review of determinants of breast cancer risk among women with benign breast disease.
NPJ Breast Cancer. 2025 Feb 15;11(1):16. doi: 10.1038/s41523-024-00703-w.
6
Machine learning based anoikis signature predicts personalized treatment strategy of breast cancer.
Front Immunol. 2024 Nov 22;15:1491508. doi: 10.3389/fimmu.2024.1491508. eCollection 2024.
8
Polygenic risk scores stratify breast cancer risk among women with benign breast disease.
J Natl Cancer Inst. 2025 Mar 1;117(3):456-464. doi: 10.1093/jnci/djae255.

本文引用的文献

1
Performance of common genetic variants in breast-cancer risk models.
N Engl J Med. 2010 Mar 18;362(11):986-93. doi: 10.1056/NEJMoa0907727.
2
Screening for breast cancer: U.S. Preventive Services Task Force recommendation statement.
Ann Intern Med. 2009 Nov 17;151(10):716-26, W-236. doi: 10.7326/0003-4819-151-10-200911170-00008.
3
Ki67: a time-varying biomarker of risk of breast cancer in atypical hyperplasia.
Breast Cancer Res Treat. 2010 Jun;121(2):431-7. doi: 10.1007/s10549-009-0534-7. Epub 2009 Sep 23.
4
Underestimation of risk by Gail model extends beyond women with atypical hyperplasia.
J Clin Oncol. 2009 Mar 20;27(9):1526; author reply 1527. doi: 10.1200/JCO.2008.21.2175. Epub 2009 Feb 9.
5
Assessment of the accuracy of the Gail model in women with atypical hyperplasia.
J Clin Oncol. 2008 Nov 20;26(33):5374-9. doi: 10.1200/JCO.2007.14.8833. Epub 2008 Oct 14.
6
Association between cyclooxygenase-2 expression in atypical hyperplasia and risk of breast cancer.
J Natl Cancer Inst. 2008 Mar 19;100(6):421-7. doi: 10.1093/jnci/djn036. Epub 2008 Mar 11.
8
Mammographic density, breast cancer risk and risk prediction.
Breast Cancer Res. 2007;9(6):217. doi: 10.1186/bcr1829.
9
Stratification of breast cancer risk in women with atypia: a Mayo cohort study.
J Clin Oncol. 2007 Jul 1;25(19):2671-7. doi: 10.1200/JCO.2006.09.0217. Epub 2007 Jun 11.
10
The risk of cancer risk prediction: "What is my risk of getting breast cancer"?
J Natl Cancer Inst. 2006 Dec 6;98(23):1673-5. doi: 10.1093/jnci/djj501.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验