Guo Xiao, Xing Jiaying, Cao Yuyan, Yang Wenchuang, Shi Xinlin, Mu Runhong, Wang Tao
School of Pharmacy, Beihua University, Jilin, China.
School of Basic Medical Sciences, Beihua University, Jilin, China.
Front Immunol. 2024 Nov 22;15:1491508. doi: 10.3389/fimmu.2024.1491508. eCollection 2024.
Breast cancer remains a leading cause of mortality among women worldwide, emphasizing the urgent need for innovative prognostic tools to improve treatment strategies. Anoikis, a form of programmed cell death critical in preventing metastasis, plays a pivotal role in breast cancer progression.
This study introduces the Artificial Intelligence-Derived Anoikis Signature (AIDAS), a novel machine learning-based prognostic tool that identifies key anoikis-related gene patterns in breast cancer. AIDAS was developed using multi-cohort transcriptomic data and validated through immunohistochemistry assays on clinical samples to ensure robustness and broad applicability.
AIDAS outperformed existing prognostic models in accurately predicting breast cancer outcomes, providing a reliable tool for personalized treatment. Patients with low AIDAS levels were found to be more responsive to immunotherapies, including PD-1/PD-L1 inhibitors, while high-AIDAS patients demonstrated greater susceptibility to specific chemotherapeutic agents, such as methotrexate.
These findings highlight the critical role of anoikis in breast cancer prognosis and underscore AIDAS's potential to guide individualized treatment strategies. By integrating machine learning with biological insights, AIDAS offers a promising approach for advancing personalized oncology. Its detailed understanding of the anoikis landscape paves the way for the development of targeted therapies, promising significant improvements in patient outcomes.
乳腺癌仍是全球女性死亡的主要原因,这凸显了迫切需要创新的预后工具来改善治疗策略。失巢凋亡是一种对预防转移至关重要的程序性细胞死亡形式,在乳腺癌进展中起关键作用。
本研究引入了人工智能衍生的失巢凋亡特征(AIDAS),这是一种基于机器学习的新型预后工具,可识别乳腺癌中与失巢凋亡相关的关键基因模式。AIDAS利用多队列转录组数据开发,并通过对临床样本的免疫组织化学分析进行验证,以确保其稳健性和广泛适用性。
AIDAS在准确预测乳腺癌预后方面优于现有预后模型,为个性化治疗提供了可靠工具。发现AIDAS水平低的患者对免疫疗法(包括PD-1/PD-L1抑制剂)反应更强,而AIDAS水平高的患者对特定化疗药物(如甲氨蝶呤)更敏感。
这些发现突出了失巢凋亡在乳腺癌预后中的关键作用,并强调了AIDAS在指导个体化治疗策略方面的潜力。通过将机器学习与生物学见解相结合,AIDAS为推进个性化肿瘤学提供了一种有前景的方法。其对失巢凋亡情况的详细了解为靶向治疗的开发铺平了道路,有望显著改善患者预后。