Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA.
J Colloid Interface Sci. 2010 Sep 1;349(1):366-73. doi: 10.1016/j.jcis.2010.05.073. Epub 2010 Jun 1.
A numerical method is implemented for computing the shape of a three-dimensional hydrostatic meniscus extending between two arbitrary closed contact lines under the restriction that the projections of the contact lines in a horizontal plane are eccentric circles. In a physical realization, the contact lines are attached to vertical circular cylinders, spherical particles or containers. The Laplace-Young equation determining the meniscus shape is solved in bipolar coordinates generated by conformal mapping using a finite-difference method, and the capillary force and torque exerted on the cylinders are evaluated. Numerical results are presented for a meniscus extending between two circular horizontal contact lines. The horizontal component of the capillary force at each contact line is found to increase monotonically with the cylinder center offset, favoring the concentric configuration.
提出了一种数值方法,用于计算在两个任意封闭接触线之间延伸的三维静态弯月面的形状,其限制条件是接触线在水平面上的投影为偏心圆。在物理实现中,接触线连接到垂直的圆柱形、球形颗粒或容器上。用保角映射生成的双极坐标,通过有限差分法求解确定弯月面形状的拉普拉斯-杨方程,并评估作用在圆柱体上的毛细作用力和力矩。给出了在两个水平圆形接触线之间延伸的弯月面的数值结果。每个接触线上的毛细作用力的水平分量被发现随着圆柱中心的偏移单调增加,有利于同心配置。