Suppr超能文献

一对球体在液-液界面的沉浮

Floating and Sinking of a Pair of Spheres at a Liquid-Fluid Interface.

作者信息

Cooray Himantha, Cicuta Pietro, Vella Dominic

机构信息

Cavendish Laboratory, University of Cambridge , J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.

Department of Applied Mathematics and Theoretical Physics, Institute of Theoretical Geophysics, University of Cambridge , Wilberforce Road, Cambridge CB3 0WA, U.K.

出版信息

Langmuir. 2017 Feb 14;33(6):1427-1436. doi: 10.1021/acs.langmuir.6b03373. Epub 2017 Feb 1.

Abstract

Spheres floating at liquid-fluid interfaces cause interfacial deformations such that their weight is balanced by the resultant forces of surface tension and hydrostatic pressure while also satisfying a contact angle condition. Determining the meniscus shape around several floating spheres is a complicated problem because the vertical locations of the spheres and the horizontal projections of the three-phase contact lines are not known a priori. Here, a new computational algorithm is developed to simultaneously satisfy the nonlinear Laplace-Young equation for the meniscus shape, the vertical force balance, and the geometric properties of the spheres. We implement this algorithm to find the shape of the interface around a pair of floating spheres and the horizontal force required to keep them at a fixed center-center separation. Our numerical simulations show that the ability of a pair of spheres to float (rather than sink) depends on their separation. Similar to previous work on horizontal cylinders, sinking may be induced at close range for small spheres that float when isolated. However, we also discover a new and unexpected behavior: at intermediate inter-particle distances, spheres that would sink in isolation can float as a pair. This effect is more pronounced for spheres of radius comparable to the capillary length, suggesting that this effect is a result of hydrostatic pressure, rather than surface tension. An approximate solution confirms these phenomena and shows that the mechanism is indeed the increased supporting force provided by the hydrostatic pressure. Finally, the horizontal force of capillary attraction between the spheres is calculated using the results of the numerical simulations. These results show that the classic linear superposition approximation (due to Nicolson) can lose its validity for relatively heavy particles at close range.

摘要

漂浮在液 - 液界面的球体引起界面变形,使得它们的重量由表面张力和静水压力的合力平衡,同时还满足接触角条件。确定几个漂浮球体周围的弯月面形状是一个复杂的问题,因为球体的垂直位置和三相接触线的水平投影事先并不清楚。在此,开发了一种新的计算算法,以同时满足弯月面形状的非线性拉普拉斯 - 杨方程、垂直力平衡以及球体的几何特性。我们实施此算法来找到一对漂浮球体周围的界面形状以及将它们保持在固定中心距所需的水平力。我们的数值模拟表明,一对球体漂浮(而非下沉)的能力取决于它们的间距。与先前关于水平圆柱体的工作类似,对于孤立时漂浮的小球体,在近距离可能会导致下沉。然而,我们还发现了一种新的意外行为:在中等粒子间距下,孤立时会下沉的球体可以成对漂浮。对于半径与毛细长度相当的球体,这种效应更为明显,这表明这种效应是静水压力而非表面张力的结果。一个近似解证实了这些现象,并表明该机制确实是静水压力提供的支撑力增加。最后,利用数值模拟结果计算了球体之间的毛细吸引力水平力。这些结果表明,经典的线性叠加近似(由于尼科尔森)对于近距离的相对较重粒子可能会失效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验