Suppr超能文献

使用复合整合-中断掩蔽的线索检测揭示了多种注意机制。

Cued detection with compound integration-interruption masks reveals multiple attentional mechanisms.

作者信息

Smith Philip L, Ellis Rachel, Sewell David K, Wolfgang Bradley J

机构信息

The University of Melbourne, Australia.

出版信息

J Vis. 2010 May 1;10(5):3. doi: 10.1167/10.5.3.

Abstract

The relationship between attention and visual masking was investigated in a cued detection task using a factorial masking manipulation. Stimuli were either unmasked, or were masked with simultaneous (integration) masks, or delayed (interruption) masks, or integration-interruption mask pairs. The cuing effects in detection sensitivity were smallest with unmasked stimuli, intermediate with single masks, and largest with integration-interruption pairs. Large cuing effects in RT were found in all stimulus conditions. The results are inconsistent with general mechanisms of contrast gain and response gain, which do not predict interactions with interruption masks. The data were modeled using the integrated system model of visual attention of P. L. Smith and R. Ratcliff (2009), which provides an account of both RT and accuracy. The model fits suggest the action of two independent attentional mechanisms: an early selection mechanism that enhances the perceptual representation of attended, noisy stimuli, and a late selection mechanism that increases the rate of information transfer to visual short-term memory. The results are consistent with a distributed, multi-locus system of attentional control.

摘要

在一项线索检测任务中,通过析因掩蔽操作研究了注意力与视觉掩蔽之间的关系。刺激要么未被掩蔽,要么被同时呈现的(整合)掩蔽、延迟的(中断)掩蔽或整合 - 中断掩蔽对所掩蔽。在检测敏感性方面,线索效应在未被掩蔽的刺激下最小,在单个掩蔽下居中,在整合 - 中断对下最大。在所有刺激条件下,反应时均发现了较大的线索效应。这些结果与对比度增益和反应增益的一般机制不一致,后者无法预测与中断掩蔽的相互作用。使用P. L. 史密斯和R. 拉特克利夫(2009年)的视觉注意力整合系统模型对数据进行建模,该模型能够解释反应时和准确性。模型拟合结果表明存在两种独立的注意力机制:一种早期选择机制,可增强被注意的、有噪声刺激的感知表征;另一种晚期选择机制,可提高信息传递到视觉短期记忆的速率。这些结果与注意力控制的分布式、多位点系统一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验