Laboratorio de Química Teórica, Departamento de Química, Universidad de Nariño, Sede Torobajo, Calle 18 Carrera 50, Pasto, Colombia.
J Mass Spectrom. 2010 Jul;45(7):722-33. doi: 10.1002/jms.1760.
The potential energy profiles for the fragmentations that lead to C(5)H(5)O and C(4)H(6) ions from the molecular ions C(5)H(6)O of E-2,4-pentadienal were obtained from calculations at the UB3LYP/6-311G + + (3df,3pd)//UB3LYP/6-31G(d,p) level of theory. Kinetic barriers and harmonic frequencies obtained by the density functional method were then employed in Rice-Ramsperger-Kassel-Marcus calculations of individual rate coefficients for a large number of reaction steps. The pre-equilibrium and rate-controlling step approximations were applied to different regions of the complex potential energy surface, allowing the overall rate of decomposition to be calculated and discriminated between three rival pathways: C-H bond cleavage, decarbonylation and cyclization. These processes should have to compete for an equilibrated mixture of four conformers of the E-2,4-pentadienal ions. The direct dissociation, however, can only become important in the high-energy regime. In contrast, loss of CO and cyclization are observable processes in the metastable kinetic window. The former involves a slow 1,2-hydrogen shift from the carbonyl group that is immediately followed by the formation of an ion-neutral complex which, in turn, decomposes rapidly to the s-trans-1,3-butadiene ion C(4)H(6). The predominating metastable channel is the second one, that is, a multi-step ring closure which starts with a rate-limiting cis-trans isomerization. This process yields a mixture of interconverting pyran ions that dissociates to the pyrylium ions C(5)H(5)O. These results can be used to rationalize the CID mass spectrum of E-2,4-pentadienal in a low-energy regime.
从 E-2,4-戊二醛的分子离子 C(5)H(6)O产生 C(5)H(5)O和 C(4)H(6)离子的片段化的势能曲线是通过在 UB3LYP/6-311G++(3df,3pd)//UB3LYP/6-31G(d,p)理论水平的计算获得的。然后,通过密度泛函方法获得的动力学势垒和调和频率被用于 Rice-Ramsperger-Kassel-Marcus 计算,以获得大量反应步骤的单个速率系数。预平衡和速率控制步骤的近似适用于复杂势能面的不同区域,允许计算整体分解速率,并区分三种竞争途径:C-H 键断裂、脱羰和环化。这些过程应该与 E-2,4-戊二醛离子的四个构象的平衡混合物竞争。然而,直接解离只有在高能区才变得重要。相比之下,CO 的损失和环化是亚稳动力学窗口中可观察到的过程。前者涉及羰基的缓慢 1,2-氢迁移,随后立即形成离子-中性复合物,该复合物继而迅速分解为 s-顺-1,3-丁二烯离子 C(4)H(6)。占主导地位的亚稳通道是第二个通道,即多步环化,从限速顺式-反式异构化开始。该过程产生互变异构吡喃离子的混合物,其解离为吡喃离子 C(5)H(5)O。这些结果可用于解释低能区 E-2,4-戊二醛的 CID 质谱。