Suppr超能文献

嗜热蓝藻微生物席中膦酸代谢的替代途径。

Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats.

机构信息

Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.

出版信息

ISME J. 2011 Jan;5(1):141-9. doi: 10.1038/ismej.2010.96. Epub 2010 Jul 15.

Abstract

Synechococcus sp. represents an ecologically diverse group of cyanobacteria found in numerous environments, including hot-spring microbial mats, where they are spatially distributed along thermal, light and oxygen gradients. These thermophiles engage in photosynthesis and aerobic respiration during the day, but switch to fermentative metabolism and nitrogen fixation at night. The genome of Synechococcus OS-B', isolated from Octopus Spring (Yellowstone National Park) contains a phn gene cluster encoding a phosphonate (Phn) transporter and a C-P lyase. A closely related isolate, Synechococcus OS-A, lacks this cluster, but contains genes encoding putative phosphonatases (Phnases) that appear to be active only in the presence of the Phn substrate. Both isolates grow well on several different Phns as a sole phosphorus (P) source. Interestingly, Synechococcus OS-B' can use the organic carbon backbones of Phns for heterotrophic growth in the dark, whereas in the light this strain releases organic carbon from Phn as ethane or methane (depending on the specific Phn available); Synechococcus OS-A has neither of these capabilities. These differences in metabolic strategies for assimilating the P and C of Phn by two closely related Synechococcus spp. are suggestive of niche-specific constraints in the evolution of nutrient assimilation pathways and syntrophic relationships among the microbial populations of the hot-spring mats. Thus, it is critical to evaluate levels of various P sources, including Phn, in thermally active habitats and the potential importance of these compounds in the biogeochemical cycling of P and C (some Phn compounds also contain N) in diverse terrestrial environments.

摘要

聚球藻属代表了一类广泛分布于各种环境中的蓝细菌,包括热泉微生物垫,它们在这些环境中沿温度、光照和氧气梯度呈空间分布。这些嗜热菌在白天进行光合作用和有氧呼吸,但在夜间会切换为发酵代谢和固氮作用。从黄石国家公园的章鱼泉(Octopus Spring)分离得到的聚球藻 OS-B'的基因组包含一个编码磷酸(Phn)转运体和 C-P 裂合酶的 phn 基因簇。一个密切相关的分离株,聚球藻 OS-A,缺乏这个簇,但包含编码推定的磷酸酶(Phnases)的基因,这些基因似乎只有在 Phn 底物存在的情况下才具有活性。这两个分离株都能很好地以几种不同的 Phn 作为唯一的磷(P)源生长。有趣的是,聚球藻 OS-B'可以利用 Phn 的有机碳骨架进行黑暗异养生长,而在光照下,该菌株会从 Phn 中释放出有机碳,形成乙烷或甲烷(具体取决于可用的特定 Phn);聚球藻 OS-A 则没有这些能力。这两个密切相关的聚球藻属在同化 Phn 的 P 和 C 方面的代谢策略的差异表明,在热泉微生物垫的微生物种群中,营养物质同化途径的进化和共生关系受到特定生态位的限制。因此,评估包括 Phn 在内的各种 P 源的水平以及这些化合物在不同陆地环境中 P 和 C 生物地球化学循环中的潜在重要性至关重要。

相似文献

1
Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats.
ISME J. 2011 Jan;5(1):141-9. doi: 10.1038/ismej.2010.96. Epub 2010 Jul 15.
2
Phosphorus deprivation responses and phosphonate utilization in a thermophilic Synechococcus sp. from microbial mats.
J Bacteriol. 2008 Dec;190(24):8171-84. doi: 10.1128/JB.01011-08. Epub 2008 Oct 17.
3
In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats.
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2398-403. doi: 10.1073/pnas.0507513103. Epub 2006 Feb 7.
4
Differential Phototactic Behavior of Closely Related Cyanobacterial Isolates from Yellowstone Hot Spring Biofilms.
Appl Environ Microbiol. 2022 May 24;88(10):e0019622. doi: 10.1128/aem.00196-22. Epub 2022 May 2.
9
Responses of a thermophilic Synechococcus isolate from the microbial mat of Octopus Spring to light.
Appl Environ Microbiol. 2007 Jul;73(13):4268-78. doi: 10.1128/AEM.00201-07. Epub 2007 May 4.
10
Fine-scale distribution patterns of Synechococcus ecological diversity in microbial mats of Mushroom Spring, Yellowstone National Park.
Appl Environ Microbiol. 2011 Nov;77(21):7689-97. doi: 10.1128/AEM.05927-11. Epub 2011 Sep 2.

引用本文的文献

1
Adaptive Responses of Cyanobacteria to Phosphate Limitation: A Focus on Marine Diazotrophs.
Environ Microbiol. 2024 Dec;26(12):e70023. doi: 10.1111/1462-2920.70023.
2
Nitrite-driven anaerobic ethane oxidation.
Environ Sci Ecotechnol. 2024 Jun 13;21:100438. doi: 10.1016/j.ese.2024.100438. eCollection 2024 Sep.
5
Viral infection of an estuarine influences its co-occurring heterotrophic bacterial community in the culture.
Front Microbiol. 2024 Jan 25;15:1345952. doi: 10.3389/fmicb.2024.1345952. eCollection 2024.
6
The Microbial Degradation of Natural and Anthropogenic Phosphonates.
Molecules. 2023 Sep 29;28(19):6863. doi: 10.3390/molecules28196863.
9
Microbial community successions and their dynamic functions during harmful cyanobacterial blooms in a freshwater lake.
Water Res. 2020 Oct 15;185:116292. doi: 10.1016/j.watres.2020.116292. Epub 2020 Aug 11.
10
Aquatic and terrestrial cyanobacteria produce methane.
Sci Adv. 2020 Jan 15;6(3):eaax5343. doi: 10.1126/sciadv.aax5343. eCollection 2020 Jan.

本文引用的文献

1
Evidence for phosphonate usage in the coral holobiont.
ISME J. 2010 Mar;4(3):459-61. doi: 10.1038/ismej.2009.129. Epub 2009 Dec 3.
3
Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses.
Environ Microbiol. 2010 Jan;12(1):222-38. doi: 10.1111/j.1462-2920.2009.02062.x. Epub 2009 Sep 29.
4
Molecular analysis of the phosphorus starvation response in Trichodesmium spp.
Environ Microbiol. 2009 Sep;11(9):2400-11. doi: 10.1111/j.1462-2920.2009.01968.x. Epub 2009 Jun 25.
5
Biosynthesis of phosphonic and phosphinic acid natural products.
Annu Rev Biochem. 2009;78:65-94. doi: 10.1146/annurev.biochem.78.091707.100215.
6
Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102.
ISME J. 2009 Jul;3(7):835-49. doi: 10.1038/ismej.2009.31. Epub 2009 Apr 2.
7
Detection and expression of the phosphonate transporter gene phnD in marine and freshwater picocyanobacteria.
Environ Microbiol. 2009 May;11(5):1314-24. doi: 10.1111/j.1462-2920.2009.01869.x. Epub 2009 Feb 10.
8
Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity.
Nature. 2009 Mar 5;458(7234):69-72. doi: 10.1038/nature07659.
9
Organophosphorus-degrading bacteria: ecology and industrial applications.
Nat Rev Microbiol. 2009 Feb;7(2):156-64. doi: 10.1038/nrmicro2050. Epub 2008 Dec 22.
10
Phosphorus deprivation responses and phosphonate utilization in a thermophilic Synechococcus sp. from microbial mats.
J Bacteriol. 2008 Dec;190(24):8171-84. doi: 10.1128/JB.01011-08. Epub 2008 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验