Suppr超能文献

PARETO:一种新颖的多目标调强放疗计划进化优化方法。

PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning.

机构信息

Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada.

出版信息

Med Phys. 2011 Sep;38(9):5217-29. doi: 10.1118/1.3615622.

Abstract

PURPOSE

In radiation therapy treatment planning, the clinical objectives of uniform high dose to the planning target volume (PTV) and low dose to the organs-at-risk (OARs) are invariably in conflict, often requiring compromises to be made between them when selecting the best treatment plan for a particular patient. In this work, the authors introduce Pareto-Aware Radiotherapy Evolutionary Treatment Optimization (pareto), a multiobjective optimization tool to solve for beam angles and fluence patterns in intensity-modulated radiation therapy (IMRT) treatment planning.

METHODS

pareto is built around a powerful multiobjective genetic algorithm (GA), which allows us to treat the problem of IMRT treatment plan optimization as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. We have employed a simple parameterized beam fluence representation with a realistic dose calculation approach, incorporating patient scatter effects, to demonstrate feasibility of the proposed approach on two phantoms. The first phantom is a simple cylindrical phantom containing a target surrounded by three OARs, while the second phantom is more complex and represents a paraspinal patient.

RESULTS

pareto results in a large database of Pareto nondominated solutions that represent the necessary trade-offs between objectives. The solution quality was examined for several PTV and OAR fitness functions. The combination of a conformity-based PTV fitness function and a dose-volume histogram (DVH) or equivalent uniform dose (EUD) -based fitness function for the OAR produced relatively uniform and conformal PTV doses, with well-spaced beams. A penalty function added to the fitness functions eliminates hotspots. Comparison of resulting DVHs to those from treatment plans developed with a single-objective fluence optimizer (from a commercial treatment planning system) showed good correlation. Results also indicated that pareto shows promise in optimizing the number of beams.

CONCLUSIONS

This initial evaluation of the evolutionary optimization software tool pareto for IMRT treatment planning demonstrates feasibility and provides motivation for continued development. Advantages of this approach over current commercial methods for treatment planning are many, including: (1) fully automated optimization that avoids human controlled iterative optimization and potentially improves overall process efficiency, (2) formulation of the problem as a true multiobjective one, which provides an optimized set of Pareto nondominated solutions refined over hundreds of generations and compiled from thousands of parameter sets explored during the run, and (3) rapid exploration of the final nondominated set accomplished by a graphical interface used to select the best treatment option for the patient.

摘要

目的

在放射治疗计划中,将高剂量均匀施于计划靶区(PTV)和低剂量施于危及器官(OAR)的临床目标始终存在冲突,在为特定患者选择最佳治疗计划时,通常需要在两者之间做出妥协。在这项工作中,作者引入了 Pareto-Aware Radiotherapy Evolutionary Treatment Optimization(pareto),这是一种用于解决调强放射治疗(IMRT)计划中射束角度和通量模式的多目标优化工具。

方法

pareto 围绕强大的多目标遗传算法(GA)构建,该算法允许我们将 IMRT 治疗计划优化问题视为一个整体问题,在优化过程中平等对待所有射束通量和角度参数。我们采用了一种简单的参数化射束通量表示形式,并结合了现实的剂量计算方法,包括患者散射效应,以在两个体模上证明所提出方法的可行性。第一个体模是一个简单的圆柱形体模,其中包含一个目标,周围有三个 OAR,而第二个体模更复杂,代表脊柱旁的患者。

结果

pareto 产生了大量的 Pareto 非支配解决方案数据库,这些解决方案代表了目标之间的必要权衡。对几个 PTV 和 OAR 适应度函数的解决方案质量进行了检查。将基于一致性的 PTV 适应度函数与基于剂量体积直方图(DVH)或等效均匀剂量(EUD)的 OAR 适应度函数相结合,产生了相对均匀和一致的 PTV 剂量,同时射束间隔良好。在适应度函数中添加一个惩罚函数可以消除热点。与来自商业治疗计划系统的单目标通量优化器开发的治疗计划相比,比较了产生的 DVH,结果相关性良好。结果还表明,pareto 在优化射束数量方面具有潜力。

结论

这项针对 Pareto 用于 IMRT 治疗计划的进化优化软件工具的初步评估证明了其可行性,并为进一步的开发提供了动力。与当前用于治疗计划的商业方法相比,该方法具有许多优势,包括:(1)完全自动化的优化,避免了人为控制的迭代优化,并且可能提高了整体过程效率;(2)将问题表述为真正的多目标问题,这提供了一组经过数百代优化并从运行中探索的数千个参数集中编译的优化 Pareto 非支配解决方案;(3)通过图形界面快速探索最终非支配集,该界面用于为患者选择最佳治疗方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验