The Weldon School of Biomedical Engineering, Purdue University, Indiana, USA.
IET Syst Biol. 2010 Jul;4(4):249-62. doi: 10.1049/iet-syb.2009.0031.
The sparse grid-based experiment design algorithm sequentially selects an experimental design point to discriminate between hypotheses for given experimental conditions. Sparse grids efficiently screen the global uncertain parameter space to identify acceptable parameter subspaces. Clustering the located acceptable parameter vectors by the similarity of the simulated model trajectories characterises the data-compatible model dynamics. The experiment design algorithm capitalizes on the diversity of the experimentally distinguishable system output dynamics to select the design point that best discerns between competing model-structure and parameter-encoded hypotheses. As opposed to designing the experiments to explicitly reduce uncertainty in the model parameters, this approach selects design points to differentiate between dynamical behaviours. This approach further differs from other experimental design methods in that it simultaneously addresses both parameter- and structural-based uncertainty that is applicable to some ill-posed problems where the number of uncertain parameters exceeds the amount of data, places very few requirements on the model type, available data and a priori parameter estimates, and is performed over the global uncertain parameter space. The experiment design algorithm is demonstrated on a mitogen-activated protein kinase cascade model. The results show that system dynamics are highly uncertain with limited experimental data. Nevertheless, the algorithm requires only three additional experimental data points to simultaneously discriminate between possible model structures and acceptable parameter values. This sparse grid-based experiment design process provides a systematic and computationally efficient exploration over the entire uncertain parameter space of potential model structures to resolve the uncertainty in the non-linear systems biology model dynamics.
基于稀疏网格的实验设计算法在给定的实验条件下,通过依次选择实验设计点来区分假设。稀疏网格有效地筛选全局不确定参数空间,以确定可接受的参数子空间。通过模拟模型轨迹的相似性对定位的可接受参数向量进行聚类,从而描述数据兼容的模型动力学。实验设计算法利用实验可区分的系统输出动力学的多样性,选择最佳的设计点,以区分竞争的模型结构和参数编码假设。与设计实验以明确减少模型参数不确定性的方法不同,这种方法选择设计点来区分动态行为。这种方法与其他实验设计方法的不同之处在于,它同时解决了参数和结构不确定性的问题,适用于一些病态问题,其中不确定参数的数量超过数据量,对模型类型、可用数据和先验参数估计的要求很少,并且在全局不确定参数空间中进行。该实验设计算法在丝裂原激活蛋白激酶级联模型上进行了验证。结果表明,系统动力学具有高度不确定性,实验数据有限。然而,该算法仅需要另外三个实验数据点,即可同时区分可能的模型结构和可接受的参数值。这种基于稀疏网格的实验设计过程提供了一种系统且计算高效的方法,可以在整个潜在模型结构的不确定参数空间中进行探索,以解决非线性系统生物学模型动力学中的不确定性。