Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong, China.
Neuroimage. 2011 Jan 1;54(1):389-95. doi: 10.1016/j.neuroimage.2010.07.015. Epub 2010 Jul 13.
The superior colliculus (SC) is a dome-shaped subcortical laminar structure in the mammalian midbrain, whose superficial layers receive visual information from the retina in a topological order. Despite the increasing number of studies investigating retinotopic projection in visual brain development and disorders, in vivo, high-resolution 3D mapping of topographic organization in the subcortical visual nuclei has not yet been available. This study explores the capability of 3D manganese-enhanced MRI (MEMRI) at 200 μm isotropic resolution for in vivo retinotopic mapping of the rat SC upon partial transection of the intraorbital optic nerve. One day after intravitreal Mn(2+) injection into both eyes, animals with partial transection at the right superior intraorbital optic nerve in Group 1 (n=8) exhibited a significantly lower T1-weighted signal intensity in the lateral region of the left SC compared to the left medial SC and right control SC. Partial transection toward the temporal or nasal region of the right intraorbital optic nerve in Group 2 (n=7) led to T1-weighted hypointensity in the rostral or caudal region of the left SC, whereas a clear border was observed separating 2 halves of the left SC in all groups. Previous histological and electrophysiological studies showed that the retinal ganglion cell axons emanating from superior, inferior, nasal and temporal retina projected respectively to the contralateral lateral, medial, caudal and rostral SC in rodents. While this topological pattern is preserved in the intraorbital optic nerve, it was shown that partial transection of the superior intraorbital optic nerve led to primary injury predominantly in the superior but not inferior retina and optic nerve. The results of this study demonstrated the sensitivity of submillimeter-resolution MEMRI for in vivo, 3D mapping of the precise retinotopic projections in SC upon reduced anterograde axonal transport of Mn(2+) ions from localized regions of the anterior visual pathways to the subcortical midbrain nuclei. Future MEMRI studies are envisioned that measure the topographic changes in brain development, diseases, plasticity and regeneration therapies in a global and longitudinal setting.
上丘(SC)是哺乳动物中脑的一种穹顶状皮质下层状结构,其浅层以拓扑顺序接收来自视网膜的视觉信息。尽管越来越多的研究调查了视觉脑发育和障碍中的视网膜投射,但在体内,亚皮质视觉核中拓扑组织的高分辨率 3D 映射尚未实现。本研究探讨了 200μm 各向同性分辨率的 3D 锰增强 MRI(MEMRI)在部分切断眼眶内视神经后活体大鼠 SC 视网膜投射图中的能力。在双眼玻璃体腔注射 Mn(2+)后 1 天,第 1 组(n=8)中右眼眼眶内视神经上部部分切断的动物左侧 SC 外侧区域的 T1 加权信号强度明显低于左侧内侧 SC 和右侧对照 SC。第 2 组(n=7)中右眼眼眶内视神经向颞侧或鼻侧部分切断导致左侧 SC 的前或后区域 T1 加权信号强度降低,而所有组中均观察到左侧 SC 的两半之间有明显的边界。先前的组织学和电生理学研究表明,来自上、下、鼻和颞视网膜的视网膜神经节细胞轴突分别投射到啮齿动物对侧的外侧、内侧、尾部和头部 SC。虽然这种拓扑模式在眼眶内视神经中得到保留,但研究表明,眼眶内视神经上部的部分切断主要导致上部而非下部视网膜和视神经的原发性损伤。本研究的结果表明,亚毫米分辨率 MEMRI 在活体中的敏感性,用于 3D 映射 Mn(2+)离子从前视通路局部区域到皮质下中脑核的逆行轴突运输减少后,SC 中精确的视网膜投射。未来的 MEMRI 研究设想在全局和纵向设置中测量脑发育、疾病、可塑性和再生治疗中的拓扑变化。