Suppr超能文献

彩色转灰度:视觉提示保留。

Color to gray: visual cue preservation.

机构信息

College of Computer Science, Zhejiang University, Hangzhou 310027, China.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2010 Sep;32(9):1537-52. doi: 10.1109/TPAMI.2009.74.

Abstract

Both commercial and scientific applications often need to transform color images into gray-scale images, e.g., to reduce the publication cost in printing color images or to help color blind people see visual cues of color images. However, conventional color to gray algorithms are not ready for practical applications because they encounter the following problems: 1) Visual cues are not well defined so it is unclear how to preserve important cues in the transformed gray-scale images; 2) some algorithms have extremely high time cost for computation; and 3) some require human-computer interactions to have a reasonable transformation. To solve or at least reduce these problems, we propose a new algorithm based on a probabilistic graphical model with the assumption that the image is defined over a Markov random field. Thus, color to gray procedure can be regarded as a labeling process to preserve the newly well--defined visual cues of a color image in the transformed gray-scale image. Visual cues are measurements that can be extracted from a color image by a perceiver. They indicate the state of some properties of the image that the perceiver is interested in perceiving. Different people may perceive different cues from the same color image and three cues are defined in this paper, namely, color spatial consistency, image structure information, and color channel perception priority. We cast color to gray as a visual cue preservation procedure based on a probabilistic graphical model and optimize the model based on an integral minimization problem. We apply the new algorithm to both natural color images and artificial pictures, and demonstrate that the proposed approach outperforms representative conventional algorithms in terms of effectiveness and efficiency. In addition, it requires no human-computer interactions.

摘要

商业和科学应用通常都需要将彩色图像转换为灰度图像,例如,为了降低彩色图像印刷的出版成本,或者帮助色盲人士看到彩色图像的视觉线索。然而,传统的颜色到灰度的算法还不能满足实际应用的需求,因为它们遇到了以下问题:1)视觉线索没有很好地定义,因此不清楚如何在转换后的灰度图像中保留重要的线索;2)一些算法的计算时间成本极高;3)有些算法需要人机交互才能进行合理的转换。为了解决或至少减少这些问题,我们提出了一种基于概率图形模型的新算法,假设图像是定义在马尔可夫随机场上的。因此,颜色到灰度的过程可以看作是一个标记过程,用于在转换后的灰度图像中保留新定义的颜色图像的视觉线索。视觉线索是观察者可以从彩色图像中提取的测量值,它们指示了观察者感兴趣的图像某些属性的状态。不同的人可能会从同一幅彩色图像中感知到不同的线索,本文定义了三种线索,即颜色空间一致性、图像结构信息和颜色通道感知优先级。我们将颜色到灰度转换为基于概率图形模型的视觉线索保留过程,并基于积分最小化问题来优化模型。我们将新算法应用于自然彩色图像和人工图像,并证明,在有效性和效率方面,该方法优于代表性的传统算法。此外,它不需要人机交互。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验