Suppr超能文献

利用基于支持向量机的方法深入了解介导三维结构域交换机制的蛋白质序列和结构衍生特征。

Insights into Protein Sequence and Structure-Derived Features Mediating 3D Domain Swapping Mechanism using Support Vector Machine Based Approach.

作者信息

Shameer Khader, Pugalenthi Ganesan, Kandaswamy Krishna Kumar, Suganthan Ponnuthurai N, Archunan Govindaraju, Sowdhamini Ramanathan

机构信息

National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, 560065, India.

出版信息

Bioinform Biol Insights. 2010 Jun 17;4:33-42. doi: 10.4137/bbi.s4464.

Abstract

3-dimensional domain swapping is a mechanism where two or more protein molecules form higher order oligomers by exchanging identical or similar subunits. Recently, this phenomenon has received much attention in the context of prions and neurodegenerative diseases, due to its role in the functional regulation, formation of higher oligomers, protein misfolding, aggregation etc. While 3-dimensional domain swap mechanism can be detected from three-dimensional structures, it remains a formidable challenge to derive common sequence or structural patterns from proteins involved in swapping. We have developed a SVM-based classifier to predict domain swapping events using a set of features derived from sequence and structural data. The SVM classifier was trained on features derived from 150 proteins reported to be involved in 3D domain swapping and 150 proteins not known to be involved in swapped conformation or related to proteins involved in swapping phenomenon. The testing was performed using 63 proteins from the positive dataset and 63 proteins from the negative dataset. We obtained 76.33% accuracy from training and 73.81% accuracy from testing. Due to high diversity in the sequence, structure and functions of proteins involved in domain swapping, availability of such an algorithm to predict swapping events from sequence and structure-derived features will be an initial step towards identification of more putative proteins that may be involved in swapping or proteins involved in deposition disease. Further, the top features emerging in our feature selection method may be analysed further to understand their roles in the mechanism of domain swapping.

摘要

三维结构域交换是一种机制,通过这种机制,两个或更多蛋白质分子通过交换相同或相似的亚基形成更高阶的寡聚体。最近,由于其在功能调节、更高阶寡聚体的形成、蛋白质错误折叠、聚集等方面的作用,这种现象在朊病毒和神经退行性疾病的背景下受到了广泛关注。虽然可以从三维结构中检测到三维结构域交换机制,但从参与交换的蛋白质中推导常见的序列或结构模式仍然是一项艰巨的挑战。我们开发了一种基于支持向量机的分类器,使用从序列和结构数据中衍生的一组特征来预测结构域交换事件。支持向量机分类器是根据从150种据报道参与三维结构域交换的蛋白质以及150种未知参与交换构象或与参与交换现象的蛋白质相关的蛋白质中衍生的特征进行训练的。测试使用了来自阳性数据集的63种蛋白质和来自阴性数据集的63种蛋白质。我们在训练中获得了76.33%的准确率,在测试中获得了73.81%的准确率。由于参与结构域交换的蛋白质在序列、结构和功能上具有高度多样性,利用这样一种算法从序列和结构衍生的特征中预测交换事件将是朝着识别更多可能参与交换的假定蛋白质或参与沉积疾病的蛋白质迈出的第一步。此外,可以进一步分析我们的特征选择方法中出现的顶级特征,以了解它们在结构域交换机制中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c9b/2901629/fd1756340196/bbi-2010-033f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验