Department of Biological Sciences, University of Manitoba, Winnipeg, Canada.
BMC Evol Biol. 2010 Jul 16;10:214. doi: 10.1186/1471-2148-10-214.
Elevated blood O(2) affinity enhances survival at low O(2) pressures, and is perhaps the best known and most broadly accepted evolutionary adjustment of terrestrial vertebrates to environmental hypoxia. This phenotype arises by increasing the intrinsic O(2) affinity of the hemoglobin (Hb) molecule, by decreasing the intracellular concentration of allosteric effectors (e.g., 2,3-diphosphoglycerate; DPG), or by suppressing the sensitivity of Hb to these physiological cofactors.
Here we report that strictly fossorial eastern moles (Scalopus aquaticus) have evolved a low O(2) affinity, DPG-insensitive Hb - contrary to expectations for a mammalian species that is adapted to the chronic hypoxia and hypercapnia of subterranean burrow systems. Molecular modelling indicates that this functional shift is principally attributable to a single charge altering amino acid substitution in the beta-type delta-globin chain (delta136Gly-->Glu) of this species that perturbs electrostatic interactions between the dimer subunits via formation of an intra-chain salt-bridge with delta82Lys. However, this replacement also abolishes key binding sites for the red blood cell effectors Cl-, lactate and DPG (the latter of which is virtually absent from the red cells of this species) at delta82Lys, thereby markedly reducing competition for carbamate formation (CO(2) binding) at the delta-chain N-termini.
We propose this Hb phenotype illustrates a novel mechanism for adaptively elevating the CO(2) carrying capacity of eastern mole blood during burst tunnelling activities associated with subterranean habitation.
血液 O₂亲和力的升高增强了在低 O₂压力下的生存能力,这也许是陆地脊椎动物对环境缺氧最广为人知和最广泛接受的进化适应。这种表型是通过增加血红蛋白(Hb)分子的内在 O₂亲和力、降低细胞内变构效应物(如 2,3-二磷酸甘油酸;DPG)的浓度,或通过抑制 Hb 对这些生理辅助因子的敏感性来实现的。
我们在这里报告,严格穴居的东部鼹鼠(Scalopus aquaticus)已经进化出了一种低 O₂亲和力、DPG 不敏感的 Hb——这与适应地下洞穴系统中慢性缺氧和高碳酸血症的哺乳动物物种的预期相反。分子建模表明,这种功能转变主要归因于该物种β型 δ-球蛋白链(delta136Gly-->Glu)中的一个单一电荷改变氨基酸取代,通过与 delta82Lys 形成链内盐桥,扰乱了二聚体亚基之间的静电相互作用。然而,这种取代也消除了红细胞效应物 Cl-、乳酸和 DPG(该物种的红细胞中几乎不存在 DPG)在 delta82Lys 上的关键结合位点,从而显著降低了在 delta-链 N 末端形成氨基甲酸盐(CO₂结合)的竞争。
我们提出,这种 Hb 表型说明了一种新的机制,即在与地下栖息相关的爆发性挖掘活动中,适应性地提高东部鼹鼠血液的 CO₂携带能力。