CAS innovations GmbH & Co. KG., Am Heusteg 47, 91056, Erlangen, Germany.
Int J Comput Assist Radiol Surg. 2011 Mar;6(2):217-27. doi: 10.1007/s11548-010-0502-z. Epub 2010 Jul 18.
Image Guided Surgery (IGS) navigation systems may acquire the position of an instrument relative to the patient with an infrared light-based stereo tracking camera. The measured instrument position is then transformed from the tracking coordinate system to the coordinate system of the intraoperatively acquired medical images.
A robust and practical automatic method was developed to determine the coordinate transformation from the tracking device to intraoperatively acquired images. The method works with a patient reference device that contains both fluoroscopic markers and tracking markers in a defined geometric arrangement which is fixed on the patient. As precondition the patient reference must be acquired by at least two fluoroscopic images. From the positions of the fluoroscopic markers in these images, the location and orientation is determined and the tracking-to-image transformation is computed. 3D localization of the fluoroscopic reference markers is determined by a three-step process: marker detection, correspondence calculation and triangulation. These steps are implemented in an automatic and robust manner using a new correspondence calculation method.
The improved SVD matching method was evaluated experimentally using both synthetic point sets and fluoroscopic marker sets detected from 66 image pairs from a bone and soft tissue phantom acquired by a fluoroscopic c-arm system (Siemens Artis zee Biplane system). For the ideal point sets without outliers 100% of the correspondences were correct. For the noised point sets with up to 20% rogue points 84% correspondence were correct. For lateral translations between the directions of acquisition, the normalized SVD matching method is shown to be as robust as the original approach proposed by Scott and Longuet-Higgins [15]. For other translations, rotations, scaling and shear transformations our method is more robust. The accuracy of the 3D reconstruction approach was also evaluated with a patient phantom. The experiment was repeated with projection images having variant C-arm angulations from 10° to 130°. The results showed that the mean 3D error of the reconstructed markers was 0.36 mm with a standard deviation of 0.096 mm.
The 3D reconstruction method enables an effective tool to relate a tracking system to a FD-CT imaging system and provide adequate accuracy for most navigation applications.
图像引导手术(IGS)导航系统可以使用基于红外光的立体跟踪摄像头获取器械相对于患者的位置。然后,将测量的器械位置从跟踪坐标系转换到术中获取的医学图像的坐标系中。
开发了一种强大而实用的自动方法来确定从跟踪设备到术中获取的图像的坐标转换。该方法使用包含透视标记和跟踪标记的患者参考装置,这些标记以固定在患者身上的特定几何形状排列。作为前提条件,患者参考必须通过至少两个透视图像获取。从这些图像中透视标记的位置确定位置和方向,并计算跟踪到图像的变换。透视参考标记的 3D 定位通过三步骤过程确定:标记检测、对应计算和三角测量。这些步骤使用一种新的对应计算方法以自动和鲁棒的方式实现。
使用透视标记集和从由透视 C 臂系统(西门子 Artis zee 双平面系统)获取的骨骼和软组织体模的 66 对图像检测到的合成点集,对改进的 SVD 匹配方法进行了实验评估。对于没有异常值的理想点集,100%的对应关系都是正确的。对于具有高达 20%随机点的嘈杂点集,84%的对应关系是正确的。对于采集方向之间的横向平移,归一化 SVD 匹配方法与 Scott 和 Longuet-Higgins [15] 提出的原始方法一样鲁棒。对于其他平移、旋转、缩放和平移变换,我们的方法更稳健。还使用患者体模评估了 3D 重建方法的准确性。该实验使用从 10°到 130°的不同 C 臂角度的投影图像重复进行。结果表明,重建标记的平均 3D 误差为 0.36 毫米,标准偏差为 0.096 毫米。
3D 重建方法为将跟踪系统与 FD-CT 成像系统相关联提供了有效工具,并为大多数导航应用提供了足够的准确性。