Suppr超能文献

通过保留局部邻域结构实现非刚性形状的鲁棒点匹配。

Robust point matching for nonrigid shapes by preserving local neighborhood structures.

作者信息

Zheng Yefeng, Doermann David

机构信息

Language and Media Processing Laboratory, Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2006 Apr;28(4):643-9. doi: 10.1109/TPAMI.2006.81.

Abstract

In previous work on point matching, a set of points is often treated as an instance of a joint distribution to exploit global relationships in the point set. For nonrigid shapes, however, the local relationship among neighboring points is stronger and more stable than the global one. In this paper, we introduce the lotion of a neighborhood structure for the general point matching problem. We formulate point matching as an optimization problem to preserve local neighborhood structures during matching. Our approach has a simple graph matching interpretation, where each point is a node in the graph, and two nodes are connected by an edge if they are neighbors. The optimal match between two graphs is the one that maximizes the number of matched edges. Existing techniques are leveraged to search for an optimal solution with the shape context distance used to initialize the graph matching, followed by relaxation labeling updates for refinement. Extensive experiments show the robustness of our approach under deformation, noise in point locations, outliers, occlusion, and rotation. It outperforms the shape context and TPS-RPM algorithms on most scenarios.

摘要

在先前关于点匹配的工作中,一组点通常被视为联合分布的一个实例,以利用点集中的全局关系。然而,对于非刚性形状,相邻点之间的局部关系比全局关系更强且更稳定。在本文中,我们针对一般的点匹配问题引入了邻域结构的概念。我们将点匹配表述为一个优化问题,以便在匹配过程中保留局部邻域结构。我们的方法有一种简单的图匹配解释,其中每个点是图中的一个节点,如果两个节点是邻居,则它们由一条边连接。两个图之间的最优匹配是使匹配边数量最大化的那个匹配。利用现有技术来搜索最优解,使用形状上下文距离来初始化图匹配,随后通过松弛标记更新进行细化。大量实验表明我们的方法在变形、点位置噪声、离群值、遮挡和旋转情况下具有鲁棒性。在大多数场景下,它优于形状上下文和TPS - RPM算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验