Suppr超能文献

钆-二乙三胺五乙酸-胱氨酸双酰胺共聚物

Gd-DTPA l-Cystine bisamide copolymers

作者信息

Cheng Kenneth T., Lu Zheng-Rong, Kaneshiro Todd

机构信息

National Center for Biotechnology Information, NLM, NIH, Bethesda, MD,

Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, Corresponding Author,

Abstract

The Gd-DTPA l-cystine bisamide copolymer (GCAC) is a biodegradable, macromolecular contrast agent designed for contrast enhancement of the blood pool, liver, and kidneys for magnetic resonance imaging (MRI) (1). The gadolinium(III) ion (Gd) is a paramagnetic lanthanide metal ion with seven unpaired electrons. MRI signals depend on a wide range of parameters. The key factor of conventional MRI contrast is the interaction of the total water signal (proton density) and the magnetic properties of the tissues (2, 3). Various paramagnetic and superparamagnetic contrast agents can increase the sensitivity and specificity of MRI. Current clinical agents are predominately Gd-based contrast agents (GBCA) and are largely nonspecific, low molecular weight compounds. These agents have transient tissue retention, a wide distribution into the extracellular space, and rapid excretion from the body (3-5). There is a need to develop intravascular MRI contrast agents that have a sufficiently long intravascular half-life () to allow imaging of the vasculature and aid in the detection of cancer and cardiovascular diseases (6, 7). Current strategies to prolong the intravascular include the chelation of paramagnetic ions to macromolecules and the use of superparamagnetic nanoparticles (1, 6, 7). Macromolecular contrast agents are generally large enough (>20 kDa) so that they do not readily diffuse across the healthy vascular endothelium and are not rapidly excreted. These agents are retained in the vasculature for a sufficiently prolonged period of time to allow for imaging, and they also preferentially accumulate in disease tissues with leaky vasculature, such as cancers and vascular disease. Most macromolecular GBCAs are prepared by the conjugation of Gd chelates to biomedical polymers including poly(amino) acids (8, 9), polysaccharides (10, 11), dendrimers (12, 13), and proteins (14), or by the copolymerization of diethylenetriamine pentaacetic acid (DTPA) dianhydride with diamines and the complexation with Gd (15, 16). However, the development of these macromolecular GBCAs has been hampered by potential Gd toxicity associated with the slow degradation of chemically modified biomedical polymers (6, 17). Smaller macromolecules (<20 kDa) are cleared more rapidly by the kidneys but their effectiveness may also be compromised. One approach to improve the safety of macromolecular GBCAs is the development of small molecules (<1.2 kDa) with a hydrophilic Gd complex and a hydrophobic region for reversible noncovalent binding to serum albumin (6, 18). Lu et al. (17, 19) proposed another approach by designing biodegradable macromolecular polydisulfide GBCAs. These agents have disulfide bonds incorporated into a polymeric backbone, and these bonds can be readily reduced by the thiol-disulfide exchange reaction with endogenous or exogenous thiols, such as glutathione and cysteine. As a result, these macromolecules are broken down into smaller complexes that are readily excreted by the kidneys. The Gd-DTPA-cystamine copolymer was the first such agent synthesized by the copolymerization of cystamine and DTPA dianhydride (17). A series of polydisulfide-based macromolecular GBCAs with different structural modifications around the disulfide bonds have been synthesized and evaluated by the same research team of Lu et al. (17, 20-23). Kaneshiro et al. (1) reported the synthesis and evaluation of GCAC and two other derivatives with different amide substituents at the cystine carboxylic groups. All three agents were cleaved into low molecular weight Gd chelates and were cleared rapidly in rats. Both renal and extrarenal toxicities have been reported after the clinical use of GBCAs in patients with underlying kidney disease (24-26). In 2007, the US FDA requested manufacturers of all GBCAs to add new warnings that exposure to GBCAs increases the risk for nephrogenic systemic fibrosis in patients with advanced kidney disease.

摘要

钆 - 二乙三胺五醋酸 - 胱氨酸双酰胺共聚物(GCAC)是一种可生物降解的大分子造影剂,专为磁共振成像(MRI)增强血池、肝脏和肾脏的对比度而设计(1)。钆(III)离子(Gd)是一种具有七个未成对电子的顺磁性镧系金属离子。MRI信号取决于多种参数。传统MRI造影的关键因素是总水信号(质子密度)与组织磁特性之间的相互作用(2,3)。各种顺磁性和超顺磁性造影剂可提高MRI的灵敏度和特异性。目前的临床造影剂主要是基于钆的造影剂(GBCA),大多是非特异性的低分子量化合物。这些造影剂具有短暂的组织滞留,广泛分布于细胞外间隙,并迅速从体内排出(3 - 5)。需要开发具有足够长血管内半衰期()的血管内MRI造影剂,以便对脉管系统进行成像,并有助于检测癌症和心血管疾病(6,7)。目前延长血管内半衰期的策略包括将顺磁性离子螯合到大分子上以及使用超顺磁性纳米颗粒(1,6,7)。大分子造影剂通常足够大(>20 kDa),以至于它们不易扩散穿过健康的血管内皮,也不会迅速排出。这些造影剂在脉管系统中保留足够长的时间以进行成像,并且它们还优先积聚在血管渗漏的疾病组织中,如癌症和血管疾病。大多数大分子GBCA是通过将钆螯合物与生物医学聚合物(包括聚氨基酸(8,9)、多糖(10,11)、树枝状大分子(12,13)和蛋白质(14))共轭制备的,或者通过二乙烯三胺五醋酸(DTPA)二酐与二胺的共聚以及与钆的络合制备的(15,16)。然而,这些大分子GBCA的开发受到与化学修饰生物医学聚合物缓慢降解相关的潜在钆毒性的阻碍(6,17)。较小的大分子(<20 kDa)被肾脏清除得更快,但其有效性也可能受到影响。提高大分子GBCA安全性的一种方法是开发具有亲水性钆络合物和疏水区域以与血清白蛋白可逆非共价结合的小分子(<1.2 kDa)(6,18)。Lu等人(17,19)提出了另一种方法,即设计可生物降解的大分子聚二硫键GBCA。这些造影剂在聚合物主链中含有二硫键,这些键可以通过与内源性或外源性硫醇(如谷胱甘肽和半胱氨酸)的硫醇 - 二硫键交换反应轻易还原。结果,这些大分子分解成较小的络合物,很容易被肾脏排出。钆 - 二乙三胺五醋酸 - 胱胺共聚物是通过胱胺与DTPA二酐的共聚合成的第一种此类造影剂(17)。Lu等人的同一研究团队合成并评估了一系列围绕二硫键具有不同结构修饰的基于聚二硫键的大分子GBCA((17,20 - 23)。Kaneshiro等人(1)报道了GCAC以及另外两种在胱氨酸羧基处具有不同酰胺取代基的衍生物的合成和评估。所有三种造影剂在大鼠体内均裂解为低分子量钆螯合物并迅速清除。在患有潜在肾脏疾病的患者中临床使用GBCA后,已报道了肾毒性和肾外毒性(24 - 26)。2007年,美国食品药品监督管理局要求所有GBCA制造商添加新的警告,即接触GBCA会增加晚期肾病患者发生肾源性系统性纤维化的风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验