Suppr超能文献

聚(乙二醇)-b-聚(L-赖氨酸)-钆-1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸-硫酸葡聚糖的聚离子复合胶束

Polyion complex micelles of poly(ethylene glycol)-b-poly(L-lysine)-gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-dextran sulfate

作者信息

Shan Liang

机构信息

National Center for Biotechnology Information, NLM, NIH

Abstract

The polyion complex micelle of poly(ethylene glycol) (PEG)-b-poly(L-lysine) (P(Lys))-gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (Gd-DOTA)-dextran sulfate, abbreviated as PIC micelles, is a Gd-based macromolecular contrast agent that has been developed by Shiraishi et al. for contrast-enhanced magnetic resonance imaging (MRI) (1). Magnetization recovery in the longitudinal direction (T1) and magnetization decay in the transverse plane (T2, T2*) form the basis of soft-tissue contrast in MRI (2). Use of Gd-based contrast agents results in a decrease of T1 and thus leads to positive contrast enhancement in MR images. However, to date, the US Food and Drug Administration-approved Gd-based agents such as Gd-diethylenetriamine pentaacetic acid (Gd-DTPA) are low-molecular-weight Gd-chelates that induce a relatively low T1 relaxivity () because of their fast rotation. Their typical values are in the range of 3–5 (mM·s) (2). Macromolecular Gd-chelates have been developed to improve the , and they are often synthesized with PEG, P(Lys), poly(glutamic acid), dendrimers, liposomes, or dextrans (3, 4). The large size of these macromolecular systems results in a higher value because of the slow tumbling of macromolecules (5, 6). In animals, these macromolecular agents exhibit a long circulation time in the bloodstream and accumulate preferentially within tumors (7). However, agents with high molecular weights may fail to be excreted from the body, and a high blood concentration could result in undesirably high background (1, 2, 6). Shiraishi et al. synthesized two types of polymeric micelle-based MRI contrast agents through conjugation of a PEG-P(Lys) block copolymer and a Gd-DOTA chelate (1, 6). One type possesses only DOTA-substituted lysine residues, and the other possesses both DOTA-substituted and unmodified lysine residues. These agents have been designed on the basis of the concept that stable Gd-chelated block copolymers produce a high , whereas formation of complex micelles lowers the (1, 2, 6). In blood circulation, the agent presents as polymeric micelles, and the is suppressed to a low level. The micelle structure inhibits access of water molecules to Gd ions in the inner core of polymeric micelles. In contrast, the polymeric micelles are gradually dissociated into single-polymer chains at the tumor sites. Because water molecules can easily access the Gd ions, the accumulated single-polymer chains generate a higher . Thus the micelle agent exhibits changeable the formation and dissociation of micelle structure. In addition, a single block copolymer with a molecular weight of <30,000 can be excreted from kidneys, thus minimizing the potential toxicity of the agents. The PEG-P(Lys-DOTA) system developed by Shiraishi et al. has multiple units of DOTA-bound lysine moiety. A fully DOTA-substituted block copolymer forms polymeric micelles, whereas insufficient DOTA conjugation to lysine residues prevents the formation of a polymeric micelle (1, 6, 8). In other words, the micelle structures do not form in the presence of a small amount of unmodified lysine residue. The Gd ion is only partially chelated to DOTA (20% of vacant DOTA) in the block copolymer even excess amount of Gd ions was added to the block copolymer because DOTA–DOTA interactions prevent the Gd ion from freely chelating into a DOTA moiety. Gd-Chelated PEG-P(Lys-DOTA) (PEG-P(Lys-DOTA-Gd)) could maintain the polymeric micelle structure. Therefore, the formation of the polymeric micelle appears to depend on interactions among vacant DOTAs. In addition, DOTA has been selected instead of DTPA because DOTA forms a more thermodynamically stable and kinetically inert complex than DTPA. The combination of PEG-P(Lys) copolymers and DOTA gives a more facile synthesis and a more stable metal chelation. Shiraishi et al. tested two micelle-based agents: PEG-P(Lys-DOTA-Gd) and PIC (1, 6). In contrast to PEG-P(Lys-DOTA-Gd) micelles, PIC micelles are prepared from the amino groups of the lysine units and oppositely charged dextran sulfate (1). The pharmacokinetics and biodistribution of the PIC micelles can be controlled through adjustment of the ratios of dextran sulfates with different molecular weights. The PIC micelles accumulate in tumors and produce a significant enhancement on MRI. This chapter summarizes the data obtained with PIC micelles. Another chapter summarizes the data obtained with PEG-P(Lys-DOTA-Gd) micelles.

摘要

聚乙二醇(PEG)-b-聚(L-赖氨酸)(P(Lys))-钆-1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸(Gd-DOTA)-硫酸葡聚糖的聚离子复合胶束,简称为PIC胶束,是一种基于钆的大分子造影剂,由白石等人开发用于增强磁共振成像(MRI)(1)。纵向方向的磁化恢复(T1)和横向平面的磁化衰减(T2、T2*)构成了MRI软组织对比度的基础(2)。使用基于钆的造影剂会导致T1降低,从而在MR图像中产生正向对比度增强。然而,迄今为止,美国食品药品监督管理局批准的基于钆的造影剂,如钆-二乙烯三胺五乙酸(Gd-DTPA),是低分子量的钆螯合物,由于其快速旋转,导致相对较低的T1弛豫率()。它们的典型值在3-5(mM·s)范围内(2)。已开发出大分子钆螯合物以提高弛豫率,并且它们通常与PEG、P(Lys)、聚谷氨酸、树枝状大分子、脂质体或葡聚糖合成(3,4)。这些大分子系统的大尺寸由于大分子的缓慢翻滚而导致更高的弛豫率值(5,6)。在动物体内,这些大分子试剂在血液中循环时间长,并优先在肿瘤内积累(7)。然而,高分子量的试剂可能无法从体内排出,高血药浓度可能导致不希望有的高背景(1,2,6)。白石等人通过将PEG-P(Lys)嵌段共聚物与Gd-DOTA螯合物共轭合成了两种基于聚合物胶束的MRI造影剂(1,6)。一种类型仅具有DOTA取代的赖氨酸残基,另一种类型同时具有DOTA取代和未修饰的赖氨酸残基。这些试剂是基于稳定的钆螯合嵌段共聚物产生高弛豫率,而复合胶束的形成会降低弛豫率这一概念设计的(1,2,6)。在血液循环中,该试剂以聚合物胶束形式存在,弛豫率被抑制到低水平。胶束结构抑制水分子进入聚合物胶束内核中的钆离子。相反,聚合物胶束在肿瘤部位逐渐解离成单聚合物链。由于水分子可以轻松接近钆离子,积累的单聚合物链产生更高的弛豫率。因此,胶束试剂表现出可变的弛豫率——胶束结构的形成和解离。此外,分子量<30,000的单个嵌段共聚物可以从肾脏排出,从而将试剂的潜在毒性降至最低。白石等人开发的PEG-P(Lys-DOTA)系统具有多个DOTA结合的赖氨酸部分单元。完全DOTA取代的嵌段共聚物形成聚合物胶束,而赖氨酸残基与DOTA的共轭不足会阻止聚合物胶束的形成(1,6,8)。换句话说,在存在少量未修饰的赖氨酸残基时不会形成胶束结构。即使向嵌段共聚物中加入过量的钆离子,钆离子在嵌段共聚物中也仅部分螯合到DOTA上(20%的空DOTA),因为DOTA-DOTA相互作用阻止钆离子自由螯合到DOTA部分。钆螯合的PEG-P(Lys-DOTA)(PEG-P(Lys-DOTA-Gd))可以维持聚合物胶束结构。因此,聚合物胶束的形成似乎取决于空DOTA之间的相互作用。此外,选择DOTA而不是DTPA是因为DOTA比DTPA形成更热力学稳定且动力学惰性的配合物。PEG-P(Lys)共聚物和DOTA的组合提供了更简便的合成和更稳定的金属螯合。白石等人测试了两种基于胶束的试剂:PEG-P(Lys-DOTA-Gd)和PIC(1,6)。与PEG-P(Lys-DOTA-Gd)胶束不同,PIC胶束由赖氨酸单元的氨基和带相反电荷的硫酸葡聚糖制备(1)。PIC胶束的药代动力学和生物分布可以通过调整不同分子量硫酸葡聚糖的比例来控制。PIC胶束在肿瘤中积累并在MRI上产生显著增强。本章总结了用PIC胶束获得的数据。另一章总结了用PEG-P(Lys-DOTA-Gd)胶束获得的数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验