Leung Kam
National Center for Biotechnology Information, NLM, NIH, Bethesda, MD
Parkinson’s disease (PD) is associated with a loss of dopamine-containing neurons in striatum of the brain (1, 2). PD is caused by a shortage of dopamine. Dopamine, a neurotransmitter, plays an important role in the mediation of movement, cognition and emotion. Dopamine also plays a role in various neuropsychiatric disorders, such as schizophrenia, autism, attention deficit hyperactivity disorder, and drug abuse. Dopamine is synthesized within nerve cells (3). L-tyrosine is converted to dihydroxyphenylalanine (L-DOPA) and then to dopamine in a two-step process. The first, rate limiting step is catalyzed by tyrosine 3-monoxygenase (tyrosine hydroxylase or TH). The second step is catalyzed by aromatic L-amino acid decarboxylase (L-DOPA decarboxylase, AAAD). In parts of the nervous system that release dopamine as a neurotransmitter (dopaminergic neurons), no further metabolism occurs and dopamine is stored in vesicles in the presynaptic nerve terminals by virtue of the dopamine reuptake transporter, DAT. 6-[F]Fluoro-L-DOPA (FDOPA) is a radiolabeled analog of L-DOPA used to evaluate the central dopaminergic function of pre-synaptic neurons using positron emission tomography (PET) (4, 5). FDOPA PET reflects DOPA transport into the neurons, DOPA decarboxylation and dopamine storage capacity. The tracer is converted to 6-[F]fluorodopamine (FDA) by AAAD and retained in the striatum. FDA can be O-methylated by catechol-O-methyltransferase (COMT) to 3-O-methyl-6-[F]fluoro-L-dopa (3-OMFD), which is uniformly distributed throughout the brain. FDA is also metabolized via monoamine oxidase to yield [F]6-fluoro-3,4-dihydroxyphenylacetic acid (FDOPAC) and subsequently by COMT to yield [F]6-fluorochomovanillic acid (FHVA). AAAD and COMT are also present in peripheral tissues such as liver, kidneys, and lung. In clinical studies, AAAD is commonly inhibited with carbidopa, whereas COMT is blocked by entacapone and nitecapone. These two types of inhibitors enhance the availability of FDOPA in the brain.
帕金森病(PD)与大脑纹状体中含多巴胺神经元的丧失有关(1,2)。PD由多巴胺短缺引起。多巴胺作为一种神经递质,在运动、认知和情绪调节中起重要作用。多巴胺在各种神经精神疾病中也起作用,如精神分裂症、自闭症、注意力缺陷多动障碍和药物滥用。多巴胺在神经细胞内合成(3)。L-酪氨酸在两步过程中先转化为二羟基苯丙氨酸(L-DOPA),然后再转化为多巴胺。第一步也是限速步骤由酪氨酸3-单加氧酶(酪氨酸羟化酶或TH)催化。第二步由芳香族L-氨基酸脱羧酶(L-DOPA脱羧酶,AAAD)催化。在作为神经递质释放多巴胺的神经系统部分(多巴胺能神经元),不再发生进一步的代谢,多巴胺通过多巴胺再摄取转运体DAT储存在突触前神经末梢的囊泡中。6-[F]氟-L-DOPA(FDOPA)是L-DOPA的放射性标记类似物,用于使用正电子发射断层扫描(PET)评估突触前神经元的中枢多巴胺能功能(4,5)。FDOPA PET反映了DOPA转运入神经元、DOPA脱羧和多巴胺储存能力。该示踪剂由AAAD转化为6-[F]氟多巴胺(FDA)并保留在纹状体中。FDA可被儿茶酚-O-甲基转移酶(COMT)O-甲基化为3-O-甲基-6-[F]氟-L-多巴(3-OMFD),其均匀分布于整个大脑。FDA也通过单胺氧化酶代谢产生[F]6-氟-3,4-二羟基苯乙酸(FDOPAC),随后再由COMT代谢产生[F]6-氟高香草酸(FHVA)。AAAD和COMT也存在于肝脏、肾脏和肺等外周组织中。在临床研究中,AAAD通常用卡比多巴抑制,而COMT被恩他卡朋和尼麦角林阻断。这两种抑制剂可提高大脑中FDOPA的可用性。