Suppr超能文献

4-[氟]氟代-L-酪氨酸

4-[F]Fluoro-l--tyrosine

Abstract

4-[F]Fluoro-l--tyrosine (4-[F]FMT) is a noncatecholic radioligand developed for positron emission tomography (PET) imaging of dopaminergic metabolism and function in the central nervous system (CNS) (1, 2). It is an analog of dihydroxyphenylalanine (l-DOPA) labeled with F, a positron emitter with a physical of 109.7 min. Dopamine is an important neurotransmitter that regulates and controls human movement, motivation, and cognition (3). It is also associated with human behaviors such as reward, reinforcement, and addiction. There are four main dopaminergic pathways in the CNS (4). Two pathways that originate in the ventral tegmental area project toward the cortex and the limbic area, a third pathway projects from the hypothalamus toward the pituitary gland, and a fourth pathway projects from the substantia nigra to the striatum. Neurons located in these pathways release dopamine as a neurotransmitter at their terminals. There are five known dopamine receptor subtypes, which are categorized as D-like or D-like (5). The D-like receptor subtypes (D and D) couple with the Gs protein to activate adenylyl cyclase, and the D-like subtypes (D, D, and D) couple with G proteins to inhibit adenylate cyclase. Abnormal changes in the dopaminergic system can lead to pathologic conditions such as Parkinson’s disease, schizophrenia, Huntington’s disease, depression, Gilles de la Tourette syndrome, narcolepsy and other neuropsychiatric disorders (6). Radiotracer imaging with specific radiolabeled molecular probes can measure pre-, post-, and intrasynaptic aspects of the dopaminergic system (6). [F]Fluoro-l-dopa ([F]FDOPA), which was developed by Firnau et al. (7), was the first presynaptic probe to be developed. It was also the first molecular probe used by Garnett et al. (8) to visualize human brain dopamine . Like endogenous l-DOPA, [F]FDOPA is converted by the enzyme aromatic l-amino acid decarboxylase (AAAD) to the dopamine analog fluorodopamine. Thus, PET imaging of [F]FDOPA allows visualization and assessment of dopamine function in the brain. However, the use of [F]FDOPA is complicated by the peripheral metabolism of this agent. DeJesus et al. (9) proposed the synthesis and use of [F]FMT and other tyrosine analogs as possible alternative dopamine probes because they lack the enediol moiety required of catecholamine--methyltransferase (COMT) substrates. Both - and -tyrosines are excellent substrates for AAAD but -tyrosine is a normal constituent in the brain (10). Three isomers of [F]FMT, 2-, 4-, and 6-[F]FMT, were initially produced and studied (11) Both 4-[F]FMT and 6-[F]FMT appeared promising as early studies showed that they provided good image contrast (1, 12, 13).

摘要

4-[F]氟-L-酪氨酸(4-[F]FMT)是一种非儿茶酚胺类放射性配体,用于中枢神经系统(CNS)多巴胺能代谢和功能的正电子发射断层扫描(PET)成像(1,2)。它是用F标记的二羟基苯丙氨酸(L-DOPA)的类似物,F是一种物理半衰期为109.7分钟的正电子发射体。多巴胺是一种重要的神经递质,调节和控制人类的运动、动机和认知(3)。它还与奖励、强化和成瘾等人类行为有关。中枢神经系统中有四条主要的多巴胺能通路(4)。两条起源于腹侧被盖区的通路向皮质和边缘区投射,第三条通路从下丘脑向垂体投射,第四条通路从黑质向纹状体投射。位于这些通路中的神经元在其终末释放多巴胺作为神经递质。已知有五种多巴胺受体亚型,分为D样或D样(5)。D样受体亚型(D1和D5)与Gs蛋白偶联以激活腺苷酸环化酶,D样亚型(D2、D3和D4)与G蛋白偶联以抑制腺苷酸环化酶。多巴胺能系统的异常变化可导致帕金森病、精神分裂症、亨廷顿病、抑郁症、抽动秽语综合征、发作性睡病和其他神经精神疾病等病理状况(6)。用特定放射性标记分子探针进行放射性示踪成像可以测量多巴胺能系统的突触前、突触后和突触内方面(6)。由Firnau等人(7)开发的[F]氟-L-多巴([F]FDOPA)是第一个开发的突触前探针。它也是Garnett等人(8)用于可视化人脑多巴胺的第一个分子探针。与内源性L-DOPA一样,[F]FDOPA被芳香族L-氨基酸脱羧酶(AAAD)转化为多巴胺类似物氟多巴胺。因此,[F]FDOPA的PET成像可以可视化和评估脑内的多巴胺功能。然而,[F]FDOPA的使用因该药物的外周代谢而变得复杂。DeJesus等人(9)提出合成和使用[F]FMT及其他酪氨酸类似物作为可能的替代多巴胺探针,因为它们缺乏儿茶酚-O-甲基转移酶(COMT)底物所需的烯二醇部分。α-和β-酪氨酸都是AAAD的优良底物,但β-酪氨酸是脑内的正常成分(10)。最初制备并研究了[F]FMT的三种异构体,即2-、4-和6-[F]FMT(11)。4-[F]FMT和6-[F]FMT在早期研究中都显示出有前景,因为它们提供了良好的图像对比度(1,12,13)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验