Zhang Huiming
National Center for Biotechnology Information, NLM, NIH, Bethesda, MD,
Human epidermal growth factor receptor (HER2, erbB2, neu) is a 185-kDa transmembrane glycoprotein and is a member of the superfamily of epidermal growth factor receptor (EGFR)-type receptor tyrosine kinases (RTKs) (1, 2). HER2 consists of an extracellular domain with four subdomains, a single transmembrane span, a cytoplasmic juxtamembrane linker region, a tyrosine kinase component, and a carboxyl-terminal tail (2). HER2 forms homo-oligomers of itself and heteroligomers with other HER receptors to trigger a complex network of multilayered signal transduction (1), which involves more than 30 ligands and their related adaptor proteins, cascaded enzymes, second messengers, and transcription factors (3). Activation of the network regulates cell growth, cell differentiation, and cell survival. Overexpression of HER2 has been found in a variety of malignant tumors, such as breast cancers (~30% of patients), ovarian cancers, and urinary bladder cancers (4). No ligand that directly binds to HER2 has been clearly identified to date (4). Radionuclide imaging of breast cancers largely relies on radiolabeling of monoclonal antibodies directed against HER2, such as trastuzumab and pertuzumab (5). These antibodies are normally large in size (molecular weight ~150 kDa) and have slow blood clearance and slow tumor penetration, which lead to low contrast in images (6). Affibody molecules are scaffold proteins that bind to targets with high affinity and specificity (7). Although Affibody molecules are able to bind to the same targets as immunoglobulins, Affibody molecules have no relation to the molecular structures or amino acid sequences of the immunoglobulin family. For example, Z (molecular weight ~7 kDa) is an Affibody molecule that specifically targets HER2, which consists of three-helix bundle Z-domains, each formed by 58 cysteine-free amino acids (8). The construction of Z is started with a three-helix bundle derived from the immunoglobulin-binding domain (B-domain) of staphylococcal protein A. Then the amino acids on the binding surface are replaced and randomized to remove the original binding affinity and create a completely new binding affinity. The randomization produces a library containing ~10 members, from which Z is identified as a ligand with high affinity to HER2 (22 pM). The helix bundle in Z provides structural rigidity and conformational stability for efficient binding to the target (9). Affibody molecules can be fused with other proteins/molecules to further modify their affinity/avidity, modulate kinetics, or introduce a peptide/protein effector function (6). Lu-CHX-A''-DTPA-ABD-Affibody (Z) (Lu-ABD-(Z), molecular weight ~19 kDa) is used with single-photon emission computed tomography (SPECT) imaging of HER2 (5). Lu-ABD-(Z) consists of a Z dimer, an albumin-binding domain (ABD), and a complex of Lu-[()-2-amino-3-(4-isothiocyanatophenyl)propyl]-trans-()-cyclohexane-1,2-diamine-pentaacetic acid) (Lu-CHX-A''-DTPA). The use of dimeric Z allows for quick extravasation and tumor penetration and stabilizes Z binding to HER2 in the presence of ABD. The fused ABD (molecular weight ~5 kDa) is a stable, three-helix bundle of 46 amino acids derived from the monovalent variant of albumin-binding motif in streptococcal protein G (10). ABD binds to albumin in blood reversibly with a dissociation constant of 4 nM (10) to generate a complex of ~87 kDa, leading to a prolonged plasma half-life and reduced uptake in kidneys (5). Lu is a radionuclide belonging to the group of rare earth radionuclides, and it is produced by neutron bombardment of purified target material in reactors (11). With a half-life of 6.71 days for β emission at 498 keV and 78% branch fraction, Lu has been a very promising radionuclide in radiotherapy for effectively destroying small tumors and metastasis (optimal size 1.2–3.0 mm) while sparing normal tissue (12). Lu also emits low-energy gamma rays at 208 and 113 keV with 10% and 6% abundance, respectively, which allows for direct monitoring of the activity distribution with SPECT and subsequent dosimetry (12).
人表皮生长因子受体(HER2、erbB2、neu)是一种185 kDa的跨膜糖蛋白,属于表皮生长因子受体(EGFR)型受体酪氨酸激酶(RTK)超家族成员(1, 2)。HER2由一个具有四个亚结构域的细胞外结构域、一个单跨膜区、一个细胞质近膜连接区、一个酪氨酸激酶组分和一个羧基末端尾巴组成(2)。HER2自身形成同型寡聚体,并与其他HER受体形成异型寡聚体,以触发一个复杂的多层信号转导网络(1),该网络涉及30多种配体及其相关衔接蛋白、级联酶、第二信使和转录因子(3)。该网络的激活调节细胞生长、细胞分化和细胞存活。HER2的过表达已在多种恶性肿瘤中被发现,如乳腺癌(约30%的患者)、卵巢癌和膀胱癌(4)。迄今为止,尚未明确鉴定出直接与HER2结合的配体(4)。乳腺癌的放射性核素成像很大程度上依赖于针对HER2的单克隆抗体的放射性标记,如曲妥珠单抗和帕妥珠单抗(5)。这些抗体通常尺寸较大(分子量约150 kDa),血液清除缓慢且肿瘤穿透缓慢,这导致图像对比度较低(6)。亲和体分子是能以高亲和力和特异性结合靶标的支架蛋白(7)。尽管亲和体分子能够与免疫球蛋白结合相同的靶标,但亲和体分子与免疫球蛋白家族的分子结构或氨基酸序列无关。例如,Z(分子量约7 kDa)是一种特异性靶向HER2的亲和体分子,它由三螺旋束Z结构域组成,每个结构域由58个无半胱氨酸的氨基酸形成(8)。Z的构建起始于源自葡萄球菌蛋白A免疫球蛋白结合结构域(B结构域)的三螺旋束。然后替换并随机化结合表面的氨基酸,以消除原始结合亲和力并产生全新的结合亲和力。随机化产生一个包含约10个成员的文库,从中鉴定出Z作为对HER2具有高亲和力(22 pM)的配体(22 pM)。Z中的螺旋束为有效结合靶标提供结构刚性和构象稳定性(9)。亲和体分子可以与其他蛋白质/分子融合,以进一步修饰其亲和力/亲合力、调节动力学或引入肽/蛋白质效应功能(6)。Lu-CHX-A''-DTPA-ABD-Affibody(Z)(Lu-ABD-(Z),分子量约19 kDa)用于HER2的单光子发射计算机断层扫描(SPECT)成像(5)。Lu-ABD-(Z)由一个Z二聚体、一个白蛋白结合结构域(ABD)和Lu-[()-2-氨基-3-(4-异硫氰酸苯丙基)丙基]-反式-()-环己烷-1,2-二胺五乙酸(Lu-CHX-A''-DTPA)复合物组成。使用二聚体Z可实现快速渗出和肿瘤穿透,并在存在ABD的情况下稳定Z与HER2的结合。融合的ABD(分子量约5 kDa)是一个稳定的由46个氨基酸组成的三螺旋束,源自链球菌蛋白G中白蛋白结合基序的单价变体(10)。ABD以解离常数4 nM与血液中的白蛋白可逆结合(10),形成约87 kDa的复合物,导致血浆半衰期延长和肾脏摄取减少(5)。Lu是一种属于稀土放射性核素组的放射性核素,它通过在反应堆中对纯化的靶材料进行中子轰击产生(11)。Lu的β发射半衰期为6.71天,能量为498 keV,分支比为78%,在放射治疗中一直是一种非常有前景的放射性核素,可有效破坏小肿瘤和转移灶(最佳尺寸为1.2 - 3.0 mm),同时 sparing正常组织(12)。Lu还分别以10%和6%的丰度发射能量为208和113 keV的低能γ射线,这使得可以通过SPECT直接监测活性分布并进行后续剂量测定(12)。