Leung Kam
National Center for Biotechnology Information, NLM, NIH,
Magnetic resonance imaging (MRI) maps information about tissues spatially and functionally. Protons (hydrogen nuclei) are widely used in imaging because of their abundance in water molecules. Water comprises 80% of most soft tissue. The contrast of proton MRI depends mainly on the density of the nucleus (proton spins), the relaxation times of the nuclear magnetization (T1, longitudinal and T2, transverse), the magnetic environment of the tissues, and the blood flow to the tissues. However, insufficient contrast between normal and diseased tissues requires the development of contrast agents. Most contrast agents affect the T1 and T2 relaxation times of the surrounding nuclei, mainly the protons of water. T2* is the spin–spin relaxation time composed of variations from molecular interactions and intrinsic magnetic heterogeneities of tissues in the magnetic field (1). The superparamagnetic iron oxide (SPIO) structure is composed of ferric iron (Fe) and ferrous iron (Fe). The iron oxide particles are coated with a layer of dextran or other polysaccharide. These particles have large combined magnetic moments or spins, which are randomly rotated in the absence of an applied magnetic field. SPIO is used mainly as a T2 contrast agent in MRI, though it can shorten both T1 and T2/T2* relaxation processes. SPIO particle uptake into the reticuloendothelial system (RES) is by endocytosis or phagocytosis. SPIO particles are also taken up by phagocytic cells such as monocytes, macrophages, and oligodendroglial cells. A variety of cells can also be labeled with these particles for cell trafficking and tumor-specific imaging studies. SPIO agents are classified by their sizes with coating material (20–3,500 nm in diameter) as large SPIO (LSPIO) nanoparticles, standard SPIO (SSPIO) nanoparticles, ultrasmall SPIO (USPIO) nanoparticles, and monocrystalline iron oxide nanoparticles (MION) (1). USPIO nanoparticles are composed of iron nanoparticles ~4–6 nm in diameter and the hydrodynamic diameter with dextran coating is ~20–50 nm. USPIO nanoparticles have a long plasma half-life because of their small size. The blood pool half-life of plasma relaxation times is calculated at ~24 h in humans (2) and 2 h in mice (3). Because of its long blood half-life, USPIO can be used as blood pool agent during the early phase of intravenous administration (4). In the late phase, USPIO is suitable for the evaluation of RES in the body, particularly in lymph nodes (5). Integrins are a family of heterodimeric glycoproteins on cell surfaces that mediate diverse biological events involving cell–cell and cell–matrix interactions (6). Integrins consist of an α and a β subunit and are important for cell adhesion and signal transduction. The αβ integrin is the most prominent receptor affecting tumor growth, tumor invasiveness, metastasis, tumor-induced angiogenesis, inflammation, osteoporosis, and rheumatoid arthritis (7-12). Expression of αβ integrin is strong on tumor cells and activated endothelial cells, whereas expression is weak on resting endothelial cells and most normal tissues. The αβ antagonists are being studied as antitumor and antiangiogenic agents, and the agonists are being studied as angiogenic agents for coronary angiogenesis (11, 13, 14). A tripeptide sequence consisting of Arg-Gly-Asp (RGD) has been identified as a recognition motif used by extracellular matrix proteins (vitronectin, fibrinogen, laminin, and collagen) to bind to a variety of integrins, including αβ. Various radiolabeled antagonists have been introduced for imaging of tumors and tumor angiogenesis (15). Most of the cyclic RGD peptides comprise five amino acids. Haubner et al. (16) reported that various cyclic RGD peptides exhibit selective inhibition of binding to αβ integrin (inhibition concentration (IC), 7–40 nM) but not to αβ (IC, 600–4,000 nM) or αβ (IC, 700–5,000 nM) integrins. Various radiolabeled cyclic RGD peptides have been found to have high accumulation in tumors in nude mice (17). The cyclo(Arg-Gly-Asp-D-Try-Glu) (c(RGDyE)) peptide was conjugated to USPIO nanoparticles for non-invasive MRI of αβ expression on activated endothelial cells in tumor (18).
磁共振成像(MRI)能在空间和功能上描绘组织信息。质子(氢原子核)因其在水分子中含量丰富而被广泛用于成像。水占大多数软组织的约80%。质子MRI的对比度主要取决于原子核的密度(质子自旋)、核磁化的弛豫时间(T1,纵向;T2,横向)、组织的磁环境以及组织的血流情况。然而,正常组织与病变组织之间的对比度不足,这就需要开发造影剂。大多数造影剂会影响周围原子核的T1和T2弛豫时间,主要是水分子中的质子。T2是由分子相互作用的变化以及组织在磁场中的固有磁不均匀性所构成的自旋 - 自旋弛豫时间(1)。超顺磁性氧化铁(SPIO)结构由三价铁(Fe)和二价铁(Fe)组成。氧化铁颗粒被一层葡聚糖或其他多糖包裹。这些颗粒具有大的组合磁矩或自旋,在没有外加磁场时随机旋转。SPIO在MRI中主要用作T2造影剂,不过它也能缩短T1和T2/T2弛豫过程。SPIO颗粒通过内吞作用或吞噬作用被网状内皮系统(RES)摄取。SPIO颗粒也会被吞噬细胞如单核细胞、巨噬细胞和少突胶质细胞摄取。多种细胞也可用这些颗粒进行标记,用于细胞追踪和肿瘤特异性成像研究。SPIO造影剂根据其尺寸和包被材料(直径约20 - 3500 nm)分为大SPIO(LSPIO)纳米颗粒、标准SPIO(SSPIO)纳米颗粒、超小SPIO(USPIO)纳米颗粒和单晶氧化铁纳米颗粒(MION)(1)。USPIO纳米颗粒由直径约4 - 6 nm的铁纳米颗粒组成,葡聚糖包被后的流体动力学直径约为20 - 50 nm。由于尺寸小,USPIO纳米颗粒在血浆中的半衰期较长。在人体中,血浆弛豫时间的血池半衰期计算约为24小时(2),在小鼠中为2小时(3)。由于其较长的血液半衰期,USPIO在静脉给药早期可作为血池造影剂(4)。在后期,USPIO适用于评估体内的RES,尤其是在淋巴结中(5)。整合素是细胞表面的一类异二聚体糖蛋白家族,介导涉及细胞 - 细胞和细胞 - 基质相互作用的多种生物学事件(6)。整合素由一个α亚基和一个β亚基组成,对细胞黏附和信号转导很重要。αβ整合素是影响肿瘤生长、肿瘤侵袭性、转移、肿瘤诱导的血管生成、炎症、骨质疏松和类风湿关节炎的最突出受体(7 - 12)。αβ整合素在肿瘤细胞和活化的内皮细胞上表达强烈,而在静止的内皮细胞和大多数正常组织上表达较弱。αβ拮抗剂正在作为抗肿瘤和抗血管生成药物进行研究,而激动剂正在作为冠状动脉血管生成的血管生成药物进行研究(11, 13, 14)。由精氨酸 - 甘氨酸 - 天冬氨酸(RGD)组成的三肽序列已被确定为细胞外基质蛋白(玻连蛋白、纤维蛋白原、层粘连蛋白和胶原蛋白)用于结合多种整合素(包括αβ)的识别基序。各种放射性标记的拮抗剂已被引入用于肿瘤和肿瘤血管生成的成像(15)。大多数环状RGD肽由五个氨基酸组成。豪布纳等人(16)报道,各种环状RGD肽对αβ整合素的结合表现出选择性抑制(抑制浓度(IC),7 - 40 nM),但对αβ(IC,600 - 4000 nM)或αβ(IC,700 - 5000 nM)整合素无抑制作用。已发现各种放射性标记的环状RGD肽在裸鼠肿瘤中有高积聚(17)。环(精氨酸 - 甘氨酸 - 天冬氨酸 - D - 色氨酸 - 谷氨酸)(c(RGDyE))肽与USPIO纳米颗粒偶联,用于对肿瘤中活化内皮细胞上αβ表达进行无创MRI成像(18)。