Leung Kam
National Center for Biotechnology Information, NLM, NIH
Magnetic resonance imaging (MRI) maps information about tissues spatially and functionally. Protons (hydrogen nuclei) are widely used in imaging because of their abundance in water molecules. Water comprises 80% of most soft tissue. The contrast of proton MRI depends primarily on the density of the nucleus (proton spins), the relaxation times of the nuclear magnetization (T1, longitudinal, and T2, transverse), the magnetic environment of the tissues, and the blood flow to the tissues. However, insufficient contrast between normal and diseased tissues requires the development of contrast agents. Most contrast agents affect the T1 and T2 relaxation times of the surrounding nuclei, mainly the protons of water. T2* is the spin–spin relaxation time composed of variations from molecular interactions and intrinsic magnetic heterogeneities of tissues in the magnetic field (1). Cross-linked iron oxide (CLIO) nanoparticles and other iron oxide formulations affect T2 primarily and lead to decreased signals. On the other hand, the paramagnetic T1 agents, such as gadolinium (Gd), and manganese (Mn), accelerate T1 relaxation and lead to brighter contrast images. The superparamagnetic iron oxide (SPIO) structure is composed of ferric iron (Fe) and ferrous iron (Fe). The iron oxide particles are coated with a protective layer of dextran or other polysaccharide. These particles have large combined magnetic moments or spins, which are randomly rotated in the absence of an applied magnetic field. SPIO is used mainly as a T2 contrast agent in MRI, though it can shorten both T1 and T2/T2* relaxation processes. SPIO particle uptake into reticuloendothelial system (RES) is by endocytosis or phagocytosis. SPIO particles are also taken up by phagocytic cells such as monocytes, macrophages, and oligodendroglial cells. A variety of cells can also be labeled with these particles for cell trafficking and tumor-specific imaging studies. SPIO agents are classified by their sizes with coating material (20–3,500 nm in diameter) as large SPIO (LSPIO) nanoparticles, standard SPIO (SSPIO) nanoparticles, ultrasmall SPIO (USPIO) nanoparticles, and monocrystalline iron oxide nanoparticles (MION) (1). USPIO is composed of iron nanoparticles of 4–6 nm diameters and the hydrodynamic diameter with dextran or polyethylene glycol (PEG) coating is 20–50 nm. USPIO nanoparticles have a long plasma half-life because of their small size. The blood pool half-life is calculated to be ~24 h in humans (2) and 2 h in mice (3). Because of its long blood half-life, USPIO can be used as blood pool agent during the early phase of intravenous administration (4). In the late phase, USPIO is suitable for the evaluation of RES in the body, particularly in lymph nodes (5). E-selectin is found on the cell surface of endothelial cells (6, 7). It binds to sialy-Lewis (a carbohydrate moiety) on the cell-surface of leukocytes. Tumor necrosis factor α (TNFα) and interleukin-1 (IL-1), released from inflammatory stimuli, upregulate E-selectin and other adhesion molecule expression on the vascular endothelial cells, which leads to leukocyte adhesion to the activated endothelium. E-selectin and other selectins are involved in arresting leukocytes on the endothelium. A sialy-Lewis mimetic (sLeX) was conjugated to USPIO (USPIO-g-sLeX) nanoparticles for non-invasive MRI of E-selectin expression on activated endothelial cells (8). Radermacher et al. (9) coupled sLeX on USPIO coated with hydrophilic polyethylene glycol (PEG) to improve blood circulation time and minimize the non-specific binding of USPIO to tissues. USPIO-PEG-sLeX has been studied for in vivo imaging of inflamed tissues in mice.
磁共振成像(MRI)在空间和功能上对组织信息进行映射。质子(氢原子核)因其在水分子中含量丰富而被广泛用于成像。水占大多数软组织的约80%。质子MRI的对比度主要取决于原子核的密度(质子自旋)、核磁化的弛豫时间(T1,纵向;T2,横向)、组织的磁环境以及组织的血流情况。然而,正常组织和病变组织之间对比度不足需要开发造影剂。大多数造影剂会影响周围原子核的T1和T2弛豫时间,主要是水的质子。T2是由分子相互作用和磁场中组织的固有磁不均匀性引起的自旋 - 自旋弛豫时间(1)。交联氧化铁(CLIO)纳米颗粒和其他氧化铁制剂主要影响T2并导致信号降低。另一方面,顺磁性T1造影剂,如钆(Gd)和锰(Mn),会加速T1弛豫并产生更亮的对比图像。超顺磁性氧化铁(SPIO)结构由三价铁(Fe)和二价铁(Fe)组成。氧化铁颗粒涂有葡聚糖或其他多糖的保护层。这些颗粒具有大的组合磁矩或自旋,在没有外加磁场时随机旋转。SPIO在MRI中主要用作T2造影剂,尽管它可以缩短T1和T2/T2弛豫过程。SPIO颗粒通过内吞作用或吞噬作用被网状内皮系统(RES)摄取。SPIO颗粒也被吞噬细胞如单核细胞、巨噬细胞和少突胶质细胞摄取。多种细胞也可以用这些颗粒标记用于细胞追踪和肿瘤特异性成像研究。SPIO制剂根据其尺寸和包被材料(直径约20 - 3500 nm)分为大SPIO(LSPIO)纳米颗粒、标准SPIO(SSPIO)纳米颗粒、超小SPIO(USPIO)纳米颗粒和单晶氧化铁纳米颗粒(MION)(1)。USPIO由直径为4 - 6 nm的铁纳米颗粒组成,葡聚糖或聚乙二醇(PEG)包被后的流体动力学直径为20 - 50 nm。由于尺寸小,USPIO纳米颗粒具有较长的血浆半衰期。在人体中,血池半衰期计算约为24小时(2),在小鼠中为2小时(3)。由于其较长的血液半衰期,USPIO在静脉给药早期可作为血池造影剂(4)。在后期,USPIO适用于评估体内的RES,特别是在淋巴结中(5)。E - 选择素在内皮细胞表面被发现(6,7)。它与白细胞细胞表面的唾液酸 - 路易斯(一种碳水化合物部分)结合。由炎症刺激释放的肿瘤坏死因子α(TNFα)和白细胞介素 - 1(IL - 1)上调血管内皮细胞上E - 选择素和其他黏附分子的表达,这导致白细胞黏附到活化的内皮上。E - 选择素和其他选择素参与使白细胞在内皮上停滞。一种唾液酸 - 路易斯模拟物(sLeX)与USPIO(USPIO - g - sLeX)纳米颗粒偶联,用于对活化内皮细胞上E - 选择素表达进行无创MRI(8)。拉德马赫等人(9)将sLeX偶联到涂有亲水性聚乙二醇(PEG)的USPIO上,以延长血液循环时间并最小化USPIO与组织的非特异性结合。USPIO - PEG - sLeX已用于小鼠体内炎症组织的成像研究。