文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于细胞追踪的多模态、异硫氰酸罗丹明B掺入的、二氧化硅包覆的磁性纳米颗粒标记的人脐带血间充质干细胞

Multimodal, rhodamine B isothiocyanate-incorporated, silica-coated magnetic nanoparticle–labeled human cord blood–derived mesenchymal stem cells for cell tracking

作者信息

Shan Liang

机构信息

National Center for Biotechnology Information, NLM, NIH

出版信息


DOI:
PMID:20641578
Abstract

Personalized diagnosis and treatment with allogenic or autologous cells are becoming a reality in the field of medicine (1, 2). Cytotoxic or engineered T cells are under clinical trial for the treatment of hematopoietic or other malignant diseases (1). Contrast agent-tagged macrophages are used as cellular probes to image the early inflammatory processes in macrophage-rich conditions such as inflammation, atherosclerosis, and acute cardiac graft rejection (2). The roles of stem cells are under intensive investigation in the therapeutic and regenerative medicine such as regenerating cardiomyocytes, neurons, bone, and cartilage (3). Genetically modified cells are used to treat genetic disorders (4). With the promising results from these studies, a critical issue is how to monitor the temporal and spatial migration and the homing of these cells, as well as the engraftment efficiency and functional capability of the transplanted cells (5, 6). Histopathological techniques have only been used to obtain information on the fate of implanted cells at the time of animal euthanization or biopsy or surgery. To track the real-time changes of cell location, viability, and functional status, cell imaging techniques have been introduced during the last few years. Cells of interest are labeled with reporter genes, fluorescent dyes, or other contrast agents that transform the tagged cells into cellular probes or imaging agents (5-7). The ability to monitor superparamagnetic iron oxide particles (SPIO) by magnetic resonance imaging (MRI) has been utilized in animal models as well as in a few clinical settings to investigate the fate of labeled cells (5-9). The advantages of using MRI for cell tracking include the high spatial resolution with high anatomic background contrast, the lack of exposure to ionizing radiation, and the ability to follow the cells for months. SPIO particles provide a strong change in signal per unit of metal, in particular on 2- and 2*-weight images. In addition, cell labeling with SPIO nanoparticles is generally nontoxic and does not affect the cell proliferation and differentiation capacity, although a few studies have reported that the stem cells labeled with SPIO lose part of their differentiation capacity in a SPIO concentration–dependent manner (8, 9). An important limitation of MRI is the fact that MRI signals cannot indicate whether cells are dead or alive. It is also unknown whether the MRI signal comes from targeted or labeled cells or from macrophages. Basically, SPIO particles are used to label the target cells by systemic application or by injecting into the tissue area of interest to monitor target cell migration after phagocytosis. SPIO are more frequently used to label the cells by incorporating into the cells directly. Furthermore, SPIO are usually encapsulated by organic polymers to increase their stability and bio-compatibility, and allow the chemical modification of their surfaces. The fact is that the uptake of different particles varies largely between different cell types (5, 6). Mesenchymal stem cells (MSCs) represent a heterogeneous subset of pluripotent stromal cells that can be isolated from different adult tissues including adipose tissue, liver, muscle, amniotic fluid, placenta, umbilical cord blood, and dental pulp, although the bone marrow remains the principal source for most preclinical and clinical studies (3, 10, 11). Although MSCs account for only 0.01–0.001% of the total nucleated cells within isolated bone marrow aspirates, they can easily be isolated and expanded through as many as 40 population doublings in ~8–10 weeks of culture (12). These cells exhibit the potential to differentiate into cells of diverse lineages, such as adipocytes, chondrocytes, osteocytes, myoblasts, cardiomyocytes, neurons, and astrocytes. In addition, MSCs possess remarkable immunosuppressive properties, and they have been shown to be effective against tumor cell growth (13, 14). Yoon et al. generated multimodal, rhodamine B isothiocyanate (RITC)-labeled, silica-coated magnetic nanoparticles (MNPs@SiO(RITC)) and Park et al. labeled the MSCs with the nanoparticles and successfully tracked the labeled cells transplanted into the subcutaneous tissue and liver of the mice (7, 15). Their results indicate that MNPs@SiO(RITC) are biocompatible and useful for human MSC labeling and cell tracking with multimodality imaging.

摘要

使用同种异体或自体细胞进行个性化诊断和治疗在医学领域正逐渐成为现实(1, 2)。细胞毒性或工程化T细胞正在进行临床试验,用于治疗造血系统或其他恶性疾病(1)。用造影剂标记的巨噬细胞被用作细胞探针,以成像富含巨噬细胞的环境中的早期炎症过程,如炎症、动脉粥样硬化和急性心脏移植排斥反应(2)。干细胞在治疗和再生医学中的作用正在深入研究中,例如再生心肌细胞、神经元、骨骼和软骨(3)。基因改造细胞用于治疗遗传疾病(4)。基于这些研究的良好结果,一个关键问题是如何监测这些细胞的时空迁移和归巢,以及移植细胞的植入效率和功能能力(5, 6)。组织病理学技术仅用于在动物安乐死、活检或手术时获取植入细胞命运的信息。为了追踪细胞位置、活力和功能状态的实时变化,在过去几年中引入了细胞成像技术。感兴趣的细胞用报告基因、荧光染料或其他造影剂标记,这些造影剂将标记的细胞转化为细胞探针或成像剂(5 - 7)。通过磁共振成像(MRI)监测超顺磁性氧化铁颗粒(SPIO)的能力已在动物模型以及一些临床环境中得到应用,以研究标记细胞的命运(5 - 9)。使用MRI进行细胞追踪的优点包括具有高解剖背景对比度的高空间分辨率、无需暴露于电离辐射以及能够对细胞进行数月的追踪。SPIO颗粒在每单位金属上提供强烈的信号变化,特别是在T2和T2*加权图像上。此外,用SPIO纳米颗粒标记细胞通常是无毒的,并且不影响细胞增殖和分化能力,尽管一些研究报告称用SPIO标记的干细胞会以SPIO浓度依赖的方式丧失部分分化能力(8, 9)。MRI的一个重要局限性是MRI信号无法表明细胞是死是活。同样未知的是MRI信号是来自靶向或标记的细胞还是来自巨噬细胞。基本上,SPIO颗粒通过全身应用或注射到感兴趣的组织区域来标记靶细胞,以监测吞噬后靶细胞的迁移。SPIO更常用于通过直接掺入细胞来标记细胞。此外,SPIO通常被有机聚合物包裹以增加其稳定性和生物相容性,并允许对其表面进行化学修饰。事实上,不同细胞类型对不同颗粒的摄取差异很大(5, 6)。间充质干细胞(MSCs)是多能基质细胞的异质亚群,可从不同的成人组织中分离出来,包括脂肪组织、肝脏、肌肉、羊水、胎盘、脐带血和牙髓,尽管骨髓仍然是大多数临床前和临床研究的主要来源(3, 10, 11)。尽管MSCs仅占分离的骨髓抽吸物中总核细胞的0.01 - 0.001%,但它们可以很容易地分离并在约8 - 10周的培养中扩增多达40个群体倍增(12)。这些细胞具有分化为多种谱系细胞的潜力,如脂肪细胞、软骨细胞、骨细胞、成肌细胞、心肌细胞、神经元和星形胶质细胞。此外,MSCs具有显著的免疫抑制特性,并且已被证明对肿瘤细胞生长有效(13, 14)。Yoon等人制备了多模态、异硫氰酸罗丹明B(RITC)标记的、二氧化硅包覆的磁性纳米颗粒(MNPs@SiO(RITC)),Park等人用这些纳米颗粒标记MSCs,并成功追踪了移植到小鼠皮下组织和肝脏中的标记细胞(7, 15)。他们的结果表明MNPs@SiO(RITC)具有生物相容性,可用于人MSCs标记和多模态成像的细胞追踪。

相似文献

[1]
Multimodal, rhodamine B isothiocyanate-incorporated, silica-coated magnetic nanoparticle–labeled human cord blood–derived mesenchymal stem cells for cell tracking

2004

[2]
Amine-modified silica-coated polyhedral superparamagnetic iron oxide nanoparticle–labeled rabbit bone marrow–derived mesenchymal stem cells

2004

[3]
Poly(,-dimethylacrylamide)-coated maghemite nanoparticles for labeling and tracking mesenchymal stem cells

2004

[4]
FluidMAG iron nanoparticle-labeled mesenchymal stem cells for tracking cell homing to tumors

2004

[5]
Near-infrared fluorescence 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide (DiR)-labeled macrophages for cell imaging

2004

[6]
Iron oxide nanoparticles-poly-L-lysine complex

2004

[7]
Characterization, in vitro cytotoxicity assessment, and in vivo visualization of multimodal, RITC-labeled, silica-coated magnetic nanoparticles for labeling human cord blood-derived mesenchymal stem cells.

Nanomedicine. 2009-8-20

[8]
-Alkyl-polyethylenimine 2 kDa–stabilized superparamagnetic iron oxide nanoparticles for MRI cell tracking

2004

[9]
Magnetic iron microbeads coupled with HEA-125 monoclonal antibody against epithelial cell adhesion molecule

2004

[10]
Magnetic resonance imaging of umbilical cord stem cells labeled with superparamagnetic iron oxide nanoparticles: effects of labelling and transplantation parameters.

Sci Rep. 2020-8-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索