文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Near-infrared fluorescence 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide (DiR)-labeled macrophages for cell imaging

作者信息

Shan Liang

机构信息

National Center for Biotechnology Information, NLM, NIH

出版信息


DOI:
PMID:20641730
Abstract

Personalized diagnosis and treatment with allogenic or autologous cells are becoming a reality in the field of medicine (1, 2). Cytotoxic or engineered T cells are under clinical trial for the treatment of hematopoietic or other malignant diseases (3). Contrast agent–tagged macrophages are used as cellular probes to image the early inflammatory processes in macrophage-rich conditions such as inflammation, atherosclerosis, and acute cardiac graft rejection (1, 4). The roles of stem cells are under intensive investigation in therapeutic and regenerative medicine such as regenerating cardiomyocytes, neurons, bone, and cartilage (2, 5). Genetically modified cells are used to treat genetic disorders (6). With the promising results from these studies, a critical issue is how to monitor the temporal and spatial migration and homing of these cells, as well as the engraftment efficiency and functional capability of the transplanted cells (7-9). Histopathological techniques have only been used to obtain the information on the fate of implanted cells at the time of animal euthanization or biopsy or surgery. To understand the temporal changes of cell location, viability, and functional status, cell imaging techniques have been introduced during the last few years. Cells of interest are labeled with reporter genes, fluorescent dyes, or other contrast agents that transform the tagged cells into cellular probes or imaging agents (10). There are three fundamentally different routes for labeling cells of interest (7, 8). One route is to label the cells through systemic contrast agent application, as seen in the systemic use of superparamagnetic iron oxides (SPIO), subsequent phagocytosis of the SPIO by macrophages, and accumulation in macrophage-rich lesions. The second route is to label the cells by injecting contrast agents into the tissue area of interest to monitor target cell migration after phagocytosis. The more widely used route is to label the cells , which is achieved by incorporation of contrast agents or by transfecting one or more reporter genes into cells. Each labeling method has its own limitations. optical cell imaging is a rapidly developing field in small animal imaging that depends on the use of reporter genes and fluorescent dyes (9). The Reporter gene–based approach is crucial for molecular imaging, but it strongly depends on the stable, persistent, and long-term expression of desired proteins. Long-term expression of the reporter genes may lead to host immune response and may carry on to the daughter cells in the proliferating population. The fluorescence-based approach is simple, cost-effective, and relatively sensitive, but issues of tissue-to-detector geometry, auto-fluorescence, and tissue absorption and scattering remain to be solved. Accurate quantification may only be possible when measurements are properly controlled and signals are normalized. Organic dyes are also less valuable for long-term cell tracking strategies. Nevertheless, the fluorescence-based approach is easily used for a variety of straightforward short-term labeling applications in cell imaging. In an attempt to noninvasively trace and monitor macrophages for better localization, visualization, and quantification of inflammation processes, Eisenblatter et al. developed a protocol for rapid and safe macrophage labeling with near-infrared fluorescent dye, and the investigators further tested the feasibility to image inflammation in a mouse granuloma inflammation model (1). Imaging results showed that the tagging of macrophages with the lipophilic tracer 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide (DiR) allowed the noninvasive tracking of inflammatory cells for several days . DiR has an excitation spectrum of 750 nm and an emission spectrum of 782 nm.

摘要

相似文献

[1]
Near-infrared fluorescence 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide (DiR)-labeled macrophages for cell imaging

2004

[2]
FluidMAG iron nanoparticle-labeled mesenchymal stem cells for tracking cell homing to tumors

2004

[3]
Amine-modified silica-coated polyhedral superparamagnetic iron oxide nanoparticle–labeled rabbit bone marrow–derived mesenchymal stem cells

2004

[4]
Multimodal, rhodamine B isothiocyanate-incorporated, silica-coated magnetic nanoparticle–labeled human cord blood–derived mesenchymal stem cells for cell tracking

2004

[5]
Poly(,-dimethylacrylamide)-coated maghemite nanoparticles for labeling and tracking mesenchymal stem cells

2004

[6]
In vivo optical imaging of cellular inflammatory response in granuloma formation using fluorescence-labeled macrophages.

J Nucl Med. 2009-10

[7]
In Vivo Cellular Imaging for Translational Medical Research.

Curr Med Imaging Rev. 2009-2-1

[8]
In vivo Near-infrared Fluorescence Tumor Imaging Using DiR-loaded Nanocarriers.

Curr Drug Deliv. 2016

[9]
"Microenvironmental contaminations" induced by fluorescent lipophilic dyes used for noninvasive in vitro and in vivo cell tracking.

Blood. 2010-3-9

[10]
Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing.

J Biomed Opt. 2006

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索