Suppr超能文献

用于通过¹³C磁共振波谱法测量pH值的超极化¹³C标记碳酸氢盐(HCO₃⁻)

Hyperpolarized C-labeled bicarbonate (HCO) for pH measurement with C magnetic resonance spectroscopy

作者信息

Shan Liang

机构信息

National Center for Biotechnology Information, NLM, NIH

Abstract

Magnetic resonance spectroscopy (MRS) is a technique that allows the non-invasive detection of multiple small metabolites within cells or extracellular spaces (1-4). Although MRS is theoretically applicable to any nucleus possessing spin, the more frequently investigated applications are in proton (H) and carbon-13 (C) (5-7). C MRS is superior to H MRS in many respects (3, 7-9). C MRS can provide specific information about the identity and structure of biologically important compounds. The chemical shift range for carbon (250 ppm) is much larger than that for proton (15 ppm), allowing for improved resolution of metabolites. However, C MRS is limited by the low natural abundance of C (1.1%) and its very low nuclear spin polarization (2.5 × 10 polarization at 3 T and 37ºC) (2, 3). Several techniques have been used to overcome these limitations, including dynamic nuclear polarization (DNP), which introduces one or more C molecules into a metabolic substrate (2, 3, 9). Because the T relaxation time of C in small molecules is much longer than that of H (0.1–2.0 s in a magnetic field of 0.1–3.0 T), hyperpolarized C-labeled tracers can be generated outside the subject and the magnetic resonance scanner (7). Nearly 100% nuclear polarization for H and 50% for C can be achieved in various organic molecules when DNP is performed in a strong magnetic field and at cryogenic temperatures. Replacing the C isotope (98.9% natural abundance) with the C isotope at a specific carbon or carbons in a metabolic substrate does not affect the substrate’s biochemistry. Hyperpolarized C-labeled substrates can provide >10,000-fold enhancement of the C MRS signals from the substrate and its subsequent metabolic products, allowing the assessment of changes in metabolic fluxes and the imaging of blood vessels and tissue perfusion without background signal from surrounding tissues (1, 3, 4, 10-14). C MRS with DNP technique has also been investigated for measuring tissue pH (4, 15). HCO is the primary extracellular buffer, and it resists changes in pH through interconversion with CO in the reaction catalyzed by carbonic anhydrase. In principal, tissue pH can be determined from C MRS measurements of endogenous HCO and CO because their concentration ratio can be used to calculate pH from the Henderson-Hasselbalch equation with an acid dissociation constant (pa) of 6.17 . On the basis of this principal, Schroeder et al. measured the pH in diseased and healthy cardiac myocytes with simultaneous detection of hyperpolarized [1-C]pyruvate-derived HCO and CO (15). Their results suggest that hyperpolarized [1-C]pyruvate with MRS detection of its derived HCO and CO can be used to measure the intracellular pH (pH) of cardiomyocytes . Similarly, Gallagher et al. generated a non-toxic, pH-probe, hyperpolarized HCO and exploited the pH in tumors with measurement of the HCO and CO concentration ratio after administration of hyperpolarized HCO (4). The tumor microenvironment is characterized by low extracellular pH (pH) and neutral-to-alkaline pH (16, 17). The average pH could be as low as 6.0. A pH gradient (pH > pH) exists across the cell membrane in tumors. This gradient is contrary to that found in normal tissues, in which pH (7.2–7.4) is lower than pH. In addition, diffusion of the H ions along concentration gradients from tumors into adjacent normal tissues creates a peritumoral acid gradient. Accurate measurement of the pH in tissues is of diagnostic and therapeutic value. Imaging with small-molecule agents has been tested for measuring tumor pH. However, agents based on H, P, or F MRS are limited by the inherent low sensitivity of spectroscopy and small pH-dependent chemical shift of these agents (18, 19). The approach with gadolinium (Gd) chelate relaxation agents, which show a pH-dependent hydrogen exchange to the Gd-bound water, requires an accurate determination of the agent concentration, which in practice is difficult to achieve (20). Although positron emission tomography and optical imaging are sensitive, they appear have difficulty obtaining a pH map at high resolution (21-23). Furthermore, most of the published probes predominantly measure the pH within cells, which is more resistant to pH changes than the extracellular space. The data obtained by Gallagher et al. from hyperpolarized HCO indicated that hyperpolarized HCO provided a means to measure the pH rather than the pH (4). Given the range of pathological conditions in which the acid–base balance is altered, this technique may prove to be of diagnostic value not only in oncology but also in the imaging of ischemia and inflammation (4).

摘要

磁共振波谱(MRS)是一种能够对细胞内或细胞外空间中的多种小分子代谢物进行无创检测的技术(1 - 4)。虽然从理论上讲,MRS适用于任何具有自旋的原子核,但目前研究较多的应用集中在质子(H)和碳 - 13(C)上(5 - 7)。碳磁共振波谱(C MRS)在许多方面优于氢磁共振波谱(H MRS)(3, 7 - 9)。C MRS能够提供有关具有生物学重要性的化合物的身份和结构的特定信息。碳的化学位移范围(约250 ppm)远大于质子的化学位移范围(约15 ppm),这使得代谢物的分辨率得以提高。然而,C MRS受到碳的天然丰度低(1.1%)及其极低的核自旋极化率(在3 T和37℃时为2.5×10的极化率)的限制(2, 3)。已经采用了多种技术来克服这些限制,包括动态核极化(DNP),它将一个或多个含碳分子引入代谢底物中(2, 3, 9)。由于小分子中碳的横向弛豫时间(T2)比氢长得多(在0.1 - 3.0 T磁场中为0.1 - 2.0 s),因此可以在受试者和磁共振扫描仪外部生成超极化的碳标记示踪剂(7)。当在强磁场和低温下进行DNP时,各种有机分子中氢的核极化率可接近100%,碳的核极化率可达到50%。在代谢底物中的特定一个或多个碳原子处,用碳 - 13同位素(天然丰度为98.9%)替代碳 - 12同位素不会影响底物的生物化学性质。超极化的碳标记底物能够使来自底物及其后续代谢产物的碳磁共振信号增强10000倍以上,从而能够评估代谢通量的变化以及对血管和组织灌注进行成像,而不会受到周围组织背景信号的干扰(1, 3, 4, 10 - 14)。采用DNP技术的碳磁共振波谱也已被用于测量组织pH值(4, 15)。碳酸氢根(HCO₃⁻)是主要的细胞外缓冲剂,它通过在碳酸酐酶催化的反应中与二氧化碳(CO₂)相互转化来抵抗pH值的变化。原则上,组织pH值可以通过对内源性HCO₃⁻和CO₂进行碳磁共振波谱测量来确定,因为它们的浓度比可用于根据亨德森 - 哈塞尔巴尔赫方程(酸解离常数(pKa)为6.17)计算pH值。基于这一原理,施罗德等人在同时检测超极化的[1 - C]丙酮酸衍生的HCO₃⁻和CO₂的情况下,测量了患病和健康心肌细胞中的pH值(15)。他们的结果表明,利用超极化的[1 - C]丙酮酸并通过磁共振波谱检测其衍生的HCO₃⁻和CO₂可用于测量心肌细胞的细胞内pH值(pHi)。同样,加拉格尔等人制备了一种无毒的pH探针——超极化的HCO₃⁻,并通过在给予超极化的HCO₃⁻后测量HCO₃⁻和CO₂的浓度比来检测肿瘤中的pH值(4)。肿瘤微环境的特征是细胞外pH值低(pHe),而细胞内pH值为中性至碱性(16, 17)。平均pHe可能低至6.0。肿瘤细胞膜两侧存在pH梯度(pHi > pHe)。这种梯度与正常组织中的情况相反,在正常组织中细胞内pH值(7.2 - 7.4)低于细胞外pH值。此外,氢离子沿浓度梯度从肿瘤扩散到相邻正常组织中会形成肿瘤周围的酸梯度。准确测量组织中的pH值具有诊断和治疗价值。已经对使用小分子试剂进行成像以测量肿瘤pH值进行了测试。然而,基于氢、磷或氟磁共振波谱的试剂受到波谱固有低灵敏度以及这些试剂pH依赖性化学位移小的限制(18, 19)。使用钆(Gd)螯合弛豫剂的方法,该方法显示出与钆结合水的pH依赖性氢交换,需要准确测定试剂浓度,而在实际操作中这很难实现(20)。尽管正电子发射断层扫描和光学成像很灵敏,但它们似乎难以获得高分辨率的pH图谱(21 - 23)。此外,大多数已发表的探针主要测量细胞内的pH值,而细胞内pH值比细胞外空间对pH变化的抵抗力更强。加拉格尔等人从超极化的HCO₃⁻获得的数据表明,超极化的HCO₃⁻提供了一种测量pHe而非pHi的方法(4)。鉴于酸碱平衡发生改变的一系列病理状况,该技术可能不仅在肿瘤学中,而且在缺血和炎症成像中都具有诊断价值(4)。

相似文献

10
Imaging pH with hyperpolarized 13C.用超极化 13C 进行 pH 成像。
NMR Biomed. 2011 Oct;24(8):1006-15. doi: 10.1002/nbm.1742. Epub 2011 Aug 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验