Chopra Arvind
National Center for Biotechnology Information, NLM, NIH, Bethesda, MD 20894
Bisphosphonates (BPs) or nitrogen-containing bisphosphonates (NBPs) are often used for the management of pain palliation and disorders related to skeletal tissue, including those arising from cancer metastases, because these compounds exhibit a very high affinity for hydroxyapatite (HA), a component of the bone matrix (1). The NBPs tend to accumulate in osteoclasts at areas of increased bone metabolism by inhibiting the farnesyl diphosphate synthase, an important enzyme of the mevalonate pathway in the cell (2). Several BPs and NBPs are available commercially for clinical use to treat different bone disorders, and there are ongoing clinical trials approved by the United States Food and Drug Administration to evaluate these compounds for the treatment of various bone ailments. In addition, BPs are often labeled with Tc or Re and used for the imaging and treatment of bone metastases. However, these compounds have limitations primarily because they either exist as a mixture of anionic compounds with varying properties (e.g., [Tc]-labeled methylene-diphosphonate (MDP) or [Tc]-labeled hydroxymethylene-diphosphonate (HMDP)) or are rapidly degraded (e.g., [Re]MDP) under conditions, resulting in a reduced uptake at targeted bone areas and an increased accumulation in non-target soft tissue (3). The Tc- or Re-labeled BPs were suggested to have these limitations because the compounds possess dual activities: one phosphonate group of the BP molecule acts as a radionuclide chelator, and the other phosphonate group binds to the target(s). Therefore, due to close proximity of the two groups, one activity may be interfering with the other (3). To circumvent problems associated with the radiolabeled BPs, investigators developed NBPs with two independent activities such that the nitrogen-containing part would only chelate the radiotracer and the BP part would target the bone (4). Ogawa et al. synthesized and labeled two NBPs, mercaptoacetylglycylglycylglycine-hydroxy-bisphosphonate (MAG3-HBP) and 6-hydrazinopyridine-3-carboxylic acid-hydroxy-bisphosphonate (HYNIC-HBP), with Tc to obtain [Tc]MAG3-HBP and [Tc]HYNIC-HBP (4). The two imaging agents were valuated for binding to hydroxyapatite (HA) under conditions and for biodistribution in normal rats (4). This chapter presents the studies performed and the results obtained with [Tc]MAG3-HBP. The studies and the results obtained with [Tc]HYNIC-HBP are presented in a separate chapter in MICAD (www.micad.nih.gov) (5).
双膦酸盐(BPs)或含氮双膦酸盐(NBPs)常用于缓解疼痛以及治疗与骨骼组织相关的疾病,包括癌症转移引起的疾病,因为这些化合物对羟基磷灰石(HA)具有很高的亲和力,而HA是骨基质的一种成分(1)。NBPs倾向于通过抑制法尼基二磷酸合酶(细胞中甲羟戊酸途径的一种重要酶)在骨代谢增加的区域积聚在破骨细胞中(2)。几种BPs和NBPs已在临床上用于治疗不同的骨骼疾病,并且美国食品药品监督管理局批准的一些正在进行的临床试验正在评估这些化合物对各种骨病的治疗效果。此外,BPs常标记有锝(Tc)或铼(Re),用于骨转移的成像和治疗。然而,这些化合物存在局限性,主要是因为它们要么以具有不同性质的阴离子化合物混合物形式存在(例如,[Tc]标记的亚甲基二膦酸盐(MDP)或[Tc]标记的羟亚甲基二膦酸盐(HMDP)),要么在某些条件下迅速降解(例如,[Re]MDP),导致在目标骨区域的摄取减少以及在非目标软组织中的积聚增加(3)。Tc或Re标记的BPs被认为存在这些局限性是因为这些化合物具有双重活性:BP分子的一个膦酸基团充当放射性核素螯合剂,另一个膦酸基团与靶点结合。因此,由于这两个基团靠得很近,一种活性可能会干扰另一种活性(3)。为了规避与放射性标记的BPs相关的问题,研究人员开发了具有两种独立活性的NBPs,使得含氮部分仅螯合放射性示踪剂,而BP部分靶向骨骼(4)。小川等人合成并将两种NBPs,巯基乙酰甘氨酰甘氨酰甘氨酸 - 羟基双膦酸盐(MAG3 - HBP)和6 - 肼基吡啶 - 3 - 羧酸 - 羟基双膦酸盐(HYNIC - HBP)用Tc标记,得到[Tc]MAG3 - HBP和[Tc]HYNIC - HBP(4)。在某些条件下对这两种显像剂与羟基磷灰石(HA)的结合以及在正常大鼠体内的生物分布进行了评估(4)。本章介绍了用[Tc]MAG3 - HBP进行的研究及获得的结果。用[Tc]HYNIC - HBP进行的研究及获得的结果在MICAD(www.micad.nih.gov)的另一章中介绍(5)。