Cho Seoae, Kim Kyunga, Kim Young Jin, Lee Jong-Keuk, Cho Yoon Shin, Lee Jong-Young, Han Bok-Ghee, Kim Heebal, Ott Jurg, Park Taesung
Interdisciplinary Program in Bioinformatics, Seoul National University, Kwanak-Gu, Seoul, South Korea, 151-747.
Ann Hum Genet. 2010 Sep 1;74(5):416-28. doi: 10.1111/j.1469-1809.2010.00597.x. Epub 2010 Jul 14.
Unraveling the genetic background of common complex traits is a major goal in modern genetics. In recent years, genome-wide association (GWA) studies have been conducted with large-scale data sets of genetic variants. Most of those studies have relied on single-marker approaches that identify single genetic factors individually and can be limited in considering fully the joint effects of multiple genetic factors on complex traits. Joint identification of multiple genetic factors would be more powerful and would provide better prediction on complex traits since it utilizes combined information across variants. Here we propose a multi-stage approach for GWA analysis: (1) prescreening, (2) joint identification of putative SNPs based on elastic-net variable selection, and (3) empirical replication using bootstrap samples. Our approach enables an efficient joint search for genetic associations in GWA analysis. The suggested empirical replication method can be beneficial in GWA studies because one can avoid a costly, independent replication study while eliminating false-positive associations and focusing on a smaller number of replicable variants. We applied the proposed approach to a GWA analysis, and jointly identified 129 genetic variants having an association with adult height in a Korean population.
揭示常见复杂性状的遗传背景是现代遗传学的一个主要目标。近年来,已经利用大规模遗传变异数据集开展了全基因组关联(GWA)研究。这些研究大多依赖单标记方法,该方法逐个识别单个遗传因素,在充分考虑多个遗传因素对复杂性状的联合效应方面可能存在局限性。联合识别多个遗传因素会更有效力,并且由于利用了跨变异的组合信息,能够对复杂性状提供更好的预测。在此,我们提出一种用于GWA分析的多阶段方法:(1)预筛选,(2)基于弹性网络变量选择联合识别推定的单核苷酸多态性(SNP),以及(3)使用自抽样样本进行实证复制。我们的方法能够在GWA分析中高效地联合搜索遗传关联。所建议的实证复制方法在GWA研究中可能是有益的,因为可以避免代价高昂的独立复制研究,同时消除假阳性关联,并聚焦于数量较少的可复制变异。我们将所提出的方法应用于一项GWA分析,并在韩国人群中联合识别出129个与成人身高相关的遗传变异。