Suppr超能文献

预测创伤后应激障碍中的恐惧消退

Predicting Fear Extinction in Posttraumatic Stress Disorder.

作者信息

Lewis Michael W, Webb Christian A, Kuhn Manuel, Akman Eylül, Jobson Sydney A, Rosso Isabelle M

机构信息

Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA 02478, USA.

Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Brain Sci. 2023 Jul 28;13(8):1131. doi: 10.3390/brainsci13081131.

Abstract

Fear extinction is the basis of exposure therapies for posttraumatic stress disorder (PTSD), but half of patients do not improve. Predicting fear extinction in individuals with PTSD may inform personalized exposure therapy development. The participants were 125 trauma-exposed adults (96 female) with a range of PTSD symptoms. Electromyography, electrocardiogram, and skin conductance were recorded at baseline, during dark-enhanced startle, and during fear conditioning and extinction. Using a cross-validated, hold-out sample prediction approach, three penalized regressions and conventional ordinary least squares were trained to predict fear-potentiated startle during extinction using 50 predictor variables (5 clinical, 24 self-reported, and 21 physiological). The predictors, selected by penalized regression algorithms, were included in multivariable regression analyses, while univariate regressions assessed individual predictors. All the penalized regressions outperformed OLS in prediction accuracy and generalizability, as indexed by the lower mean squared error in the training and holdout subsamples. During early extinction, the consistent predictors across all the modeling approaches included dark-enhanced startle, the depersonalization and derealization subscale of the dissociative experiences scale, and the PTSD hyperarousal symptom score. These findings offer novel insights into the modeling approaches and patient characteristics that may reliably predict fear extinction in PTSD. Penalized regression shows promise for identifying symptom-related variables to enhance the predictive modeling accuracy in clinical research.

摘要

恐惧消退是创伤后应激障碍(PTSD)暴露疗法的基础,但有一半的患者并无改善。预测PTSD患者的恐惧消退情况可能有助于个性化暴露疗法的发展。研究参与者为125名有过创伤经历的成年人(96名女性),他们患有一系列PTSD症状。在基线期、暗增强惊吓期间、恐惧条件反射和消退期间记录肌电图、心电图和皮肤电传导。采用交叉验证、留出样本预测方法,使用50个预测变量(5个临床变量、24个自我报告变量和21个生理变量)训练三种惩罚回归模型和传统普通最小二乘法,以预测消退期间恐惧增强的惊吓反应。通过惩罚回归算法选择的预测变量被纳入多变量回归分析,而单变量回归则评估单个预测变量。所有惩罚回归模型在预测准确性和泛化能力方面均优于普通最小二乘法,训练子样本和留出子样本中的均方误差较低即为指标。在早期消退期间,所有建模方法中一致的预测变量包括暗增强惊吓、分离体验量表的人格解体和现实解体分量表,以及PTSD过度警觉症状评分。这些发现为可能可靠预测PTSD恐惧消退的建模方法和患者特征提供了新的见解。惩罚回归在识别与症状相关的变量以提高临床研究中的预测建模准确性方面显示出前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2ce/10452660/963178ec5d0c/brainsci-13-01131-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验