Suppr超能文献

野生型和突变型β1-肾上腺素能受体构象稳定性的结构见解。

Structural insights into conformational stability of wild-type and mutant beta1-adrenergic receptor.

机构信息

Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, California, USA.

出版信息

Biophys J. 2010 Jul 21;99(2):568-77. doi: 10.1016/j.bpj.2010.04.075.

Abstract

Recent experiments to derive a thermally stable mutant of turkey beta-1-adrenergic receptor (beta1AR) have shown that a combination of six single point mutations resulted in a 20 degrees C increase in thermal stability in mutant beta1AR. Here we have used the all-atom force-field energy function to calculate a stability score to detect stabilizing point mutations in G-protein coupled receptors. The calculated stability score shows good correlation with the measured thermal stability for 76 single point mutations and 22 multiple mutants in beta1AR. We have demonstrated that conformational sampling of the receptor for various mutants improve the prediction of thermal stability by 50%. Point mutations Y227A5.58, V230A5.61, and F338M7.48 in the thermally stable mutant m23-beta1AR stabilizes key microdomains of the receptor in the inactive conformation. The Y227A5.58 and V230A5.61 mutations stabilize the ionic lock between R139(3.50) on transmembrane helix3 and E285(6.30) on transmembrane helix6. The mutation F338M7.48 on TM7 alters the interaction of the conserved motif NPxxY(x)5,6F with helix8 and hence modulates the interaction of TM2-TM7-helix8 microdomain. The D186-R317 salt bridge (in extracellular loops 2 and 3) is stabilized in the cyanopindolol-bound wild-type beta1AR, whereas the salt bridge between D184-R317 is preferred in the mutant m23. We propose that this could be the surrogate to a similar salt bridge found between the extracellular loop 2 and TM7 in beta2AR reported recently. We show that the binding energy difference between the inactive and active states is less in m23 compared to the wild-type, which explains the activation of m23 at higher norepinephrine concentration compared to the wild-type. Results from this work throw light into the mechanism behind stabilizing mutations. The computational scheme proposed in this work could be used to design stabilizing mutations for other G-protein coupled receptors.

摘要

最近的实验旨在从火鸡β-1-肾上腺素能受体(β1AR)中衍生出一种热稳定的突变体,结果表明,六个单点突变的组合导致突变β1AR 的热稳定性提高了 20°C。在这里,我们使用全原子力场能量函数来计算稳定性得分,以检测 G 蛋白偶联受体中的稳定突变。计算出的稳定性得分与β1AR 中 76 个单点突变和 22 个多重突变的测量热稳定性具有良好的相关性。我们已经证明,对各种突变体的受体构象采样可将热稳定性的预测提高 50%。在热稳定的 m23-β1AR 中,Y227A5.58、V230A5.61 和 F338M7.48 三个点突变稳定了受体的关键微域处于非激活构象。Y227A5.58 和 V230A5.61 突变稳定了跨膜螺旋 3 上的 R139(3.50)和跨膜螺旋 6 上的 E285(6.30)之间的离子锁。TM7 上的 F338M7.48 突变改变了保守基序 NPxxY(x)5,6F 与螺旋 8 的相互作用,从而调节 TM2-TM7-螺旋 8 微域的相互作用。在与细胞外环 2 和 3 结合的氰基苯丙醇胺结合的野生型β1AR 中,D186-R317 盐桥(在细胞外环 2 和 3 中)得到稳定,而在突变体 m23 中,D184-R317 之间的盐桥则是首选。我们提出,这可能是最近报道的β2AR 中细胞外环 2 和 TM7 之间类似盐桥的替代物。我们表明,与野生型相比,m23 中无活性和活性状态之间的结合能差异较小,这解释了与野生型相比,m23 在较高去甲肾上腺素浓度下的激活。这项工作的结果揭示了稳定突变背后的机制。这项工作中提出的计算方案可用于设计其他 G 蛋白偶联受体的稳定突变。

相似文献

1
Structural insights into conformational stability of wild-type and mutant beta1-adrenergic receptor.
Biophys J. 2010 Jul 21;99(2):568-77. doi: 10.1016/j.bpj.2010.04.075.
3
Engineering an ultra-thermostable β(1)-adrenoceptor.
J Mol Biol. 2011 Oct 28;413(3):628-38. doi: 10.1016/j.jmb.2011.08.057. Epub 2011 Sep 6.
4
Structure of a beta1-adrenergic G-protein-coupled receptor.
Nature. 2008 Jul 24;454(7203):486-91. doi: 10.1038/nature07101. Epub 2008 Jun 25.
5
Thermostabilization of the β1-adrenergic receptor correlates with increased entropy of the inactive state.
J Phys Chem B. 2013 Jun 20;117(24):7283-91. doi: 10.1021/jp403207c. Epub 2013 Jun 5.
6
Pharmacological Analysis and Structure Determination of 7-Methylcyanopindolol-Bound β1-Adrenergic Receptor.
Mol Pharmacol. 2015 Dec;88(6):1024-34. doi: 10.1124/mol.115.101030. Epub 2015 Sep 18.
8
Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor.
Nature. 2016 Feb 11;530(7589):237-41. doi: 10.1038/nature16577. Epub 2016 Feb 3.
10
Naturally evolved G protein-coupled receptors adopt metastable conformations.
Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13284-9. doi: 10.1073/pnas.1205512109. Epub 2012 Jul 30.

引用本文的文献

1
Sequence coevolution and structure stabilization modulate olfactory receptor expression.
Biophys J. 2022 Mar 1;121(5):830-840. doi: 10.1016/j.bpj.2022.01.015. Epub 2022 Jan 20.
2
Machine Learning for Prioritization of Thermostabilizing Mutations for G-Protein Coupled Receptors.
Biophys J. 2019 Dec 3;117(11):2228-2239. doi: 10.1016/j.bpj.2019.10.023. Epub 2019 Oct 24.
3
Prediction of Conformation Specific Thermostabilizing Mutations for Class A G Protein-Coupled Receptors.
J Chem Inf Model. 2019 Sep 23;59(9):3744-3754. doi: 10.1021/acs.jcim.9b00175. Epub 2019 Aug 27.
4
Engineering Salt Bridge Networks between Transmembrane Helices Confers Thermostability in G-Protein-Coupled Receptors.
J Chem Theory Comput. 2018 Dec 11;14(12):6574-6585. doi: 10.1021/acs.jctc.8b00602. Epub 2018 Nov 6.
5
Structural Features and Ligand Selectivity for 10 Intermediates in the Activation Process of β-Adrenergic Receptor.
ACS Omega. 2017 Dec 31;2(12):8557-8567. doi: 10.1021/acsomega.7b01031. Epub 2017 Dec 1.
6
How Can Mutations Thermostabilize G-Protein-Coupled Receptors?
Trends Pharmacol Sci. 2016 Jan;37(1):37-46. doi: 10.1016/j.tips.2015.09.005. Epub 2015 Nov 5.
7
Rapid Computational Prediction of Thermostabilizing Mutations for G Protein-Coupled Receptors.
J Chem Theory Comput. 2014 Nov 11;10(11):5149-5160. doi: 10.1021/ct500616v. Epub 2014 Oct 14.
8
Thermostabilization of the β1-adrenergic receptor correlates with increased entropy of the inactive state.
J Phys Chem B. 2013 Jun 20;117(24):7283-91. doi: 10.1021/jp403207c. Epub 2013 Jun 5.
9
Action of molecular switches in GPCRs--theoretical and experimental studies.
Curr Med Chem. 2012;19(8):1090-109. doi: 10.2174/092986712799320556.
10
Lifting the lid on GPCRs: the role of extracellular loops.
Br J Pharmacol. 2012 Mar;165(6):1688-1703. doi: 10.1111/j.1476-5381.2011.01629.x.

本文引用的文献

1
Flat-Bottom Strategy for Improved Accuracy in Protein Side-Chain Placements.
J Chem Theory Comput. 2008 Dec 9;4(12):2160-9. doi: 10.1021/ct800196k.
2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
4
Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor.
Nature. 2010 Jan 7;463(7277):108-12. doi: 10.1038/nature08650.
5
Transferability of thermostabilizing mutations between beta-adrenergic receptors.
Mol Membr Biol. 2009 Dec;26(8):385-96. doi: 10.3109/09687680903208239.
6
G-protein-coupled receptor structures were not built in a day.
Protein Sci. 2009 Jul;18(7):1335-42. doi: 10.1002/pro.165.
7
The structure and function of G-protein-coupled receptors.
Nature. 2009 May 21;459(7245):356-63. doi: 10.1038/nature08144.
8
Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4689-94. doi: 10.1073/pnas.0811065106. Epub 2009 Mar 3.
10
Predicting free energy changes using structural ensembles.
Nat Methods. 2009 Jan;6(1):3-4. doi: 10.1038/nmeth0109-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验