Suppr超能文献

从微秒级分子动力学模拟中鉴定出与视紫红质相互作用的首选部位的胆固醇的结构和动态效应。

Structural and dynamic effects of cholesterol at preferred sites of interaction with rhodopsin identified from microsecond length molecular dynamics simulations.

机构信息

Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021, USA.

出版信息

Proteins. 2009 Aug 1;76(2):403-17. doi: 10.1002/prot.22355.

Abstract

An unresolved question about GPCR function is the role of membrane components in receptor stability and activation. In particular, cholesterol is known to affect the function of membrane proteins, but the details of its effect on GPCRs are still elusive. Here, we describe how cholesterol modulates the behavior of the TM1-TM2-TM7-helix 8(H8) functional network that comprises the highly conserved NPxxY(x)(5,6)F motif, through specific interactions with the receptor. The inferences are based on the analysis of microsecond length molecular dynamics (MD) simulations of rhodopsin in an explicit membrane environment. Three regions on the rhodopsin exhibit the highest cholesterol density throughout the trajectory: the extracellular end of TM7, a location resembling the high-density sterol area from the electron microscopy data; the intracellular parts of TM1, TM2, and TM4, a region suggested as the cholesterol binding site in the recent X-ray crystallography data on beta(2)-adrenergic GPCR; and the intracellular ends of TM2-TM3, a location that was categorized as the high cholesterol density area in multiple independent 100 ns MD simulations of the same system. We found that cholesterol primarily affects specific local perturbations of the helical TM domains such as the kinks in TM1, TM2, and TM7. These local distortions, in turn, relate to rigid-body motions of the TMs in the TM1-TM2-TM7-H8 bundle. The specificity of the effects stems from the nonuniform distribution of cholesterol around the protein. Through correlation analysis we connect local effects of cholesterol on structural perturbations with a regulatory role of cholesterol in the structural rearrangements involved in GPCR function.

摘要

GPCR 功能的一个悬而未决的问题是膜成分在受体稳定性和激活中的作用。特别是,胆固醇已知会影响膜蛋白的功能,但它对 GPCR 的影响细节仍难以捉摸。在这里,我们描述了胆固醇如何通过与受体的特定相互作用来调节 TM1-TM2-TM7-螺旋 8(H8)功能网络的行为,该网络包含高度保守的 NPxxY(x)(5,6)F 基序。推断是基于对明确定义的膜环境中视紫红质的微秒长度分子动力学(MD)模拟的分析。在整个轨迹中,视紫红质有三个区域表现出最高的胆固醇密度:TM7 的细胞外末端,这是一个类似于电子显微镜数据中高密度固醇区域的位置;TM1、TM2 和 TM4 的细胞内部分,这是最近β 2-肾上腺素能 GPCR 的 X 射线晶体学数据中提出的胆固醇结合位点的区域;以及 TM2-TM3 的细胞内末端,这是在同一系统的多个独立的 100ns MD 模拟中被归类为高胆固醇密度区域的位置。我们发现胆固醇主要影响螺旋 TM 结构域的特定局部扰动,如 TM1、TM2 和 TM7 的弯曲。这些局部扭曲反过来又与 TM1-TM2-TM7-H8 束中 TM 的刚体运动有关。这种影响的特异性源于胆固醇在蛋白质周围的非均匀分布。通过相关分析,我们将胆固醇对结构扰动的局部影响与胆固醇在 GPCR 功能涉及的结构重排中的调节作用联系起来。

相似文献

6
Structural dynamics of Smoothened (SMO) in the ciliary membrane and its interaction with membrane lipids.
Biochim Biophys Acta Biomembr. 2022 Aug 1;1864(8):183946. doi: 10.1016/j.bbamem.2022.183946. Epub 2022 Apr 25.
7
Relevance of rhodopsin studies for GPCR activation.
Biochim Biophys Acta. 2014 May;1837(5):674-82. doi: 10.1016/j.bbabio.2013.09.002. Epub 2013 Sep 13.
8
Computational prediction of homodimerization of the A3 adenosine receptor.
J Mol Graph Model. 2006 Dec;25(4):549-61. doi: 10.1016/j.jmgm.2006.03.003. Epub 2006 Mar 24.
10
Allosteric Effect of Nanobody Binding on Ligand-Specific Active States of the β2 Adrenergic Receptor.
J Chem Inf Model. 2021 Dec 27;61(12):6024-6037. doi: 10.1021/acs.jcim.1c00826. Epub 2021 Nov 15.

引用本文的文献

1
Aberrant lipid accumulation and retinal pigment epithelium dysfunction in PRCD-deficient mice.
Exp Eye Res. 2024 Sep;246:110016. doi: 10.1016/j.exer.2024.110016. Epub 2024 Aug 5.
2
Improved Highly Mobile Membrane Mimetic Model for Investigating Protein-Cholesterol Interactions.
J Chem Inf Model. 2024 Jun 24;64(12):4822-4834. doi: 10.1021/acs.jcim.4c00619. Epub 2024 Jun 6.
3
PI(4,5)P and Cholesterol: Synthesis, Regulation, and Functions.
Adv Exp Med Biol. 2023;1422:3-59. doi: 10.1007/978-3-031-21547-6_1.
4
Lysine 101 in the CRAC Motif in Transmembrane Helix 2 Confers Cholesterol-Induced Thermal Stability to the Serotonin Receptor.
J Membr Biol. 2022 Dec;255(6):739-746. doi: 10.1007/s00232-022-00262-w. Epub 2022 Aug 20.
5
Molecular Simulations and Drug Discovery of Adenosine Receptors.
Molecules. 2022 Mar 22;27(7):2054. doi: 10.3390/molecules27072054.
6
PyLipID: A Python Package for Analysis of Protein-Lipid Interactions from Molecular Dynamics Simulations.
J Chem Theory Comput. 2022 Feb 8;18(2):1188-1201. doi: 10.1021/acs.jctc.1c00708. Epub 2022 Jan 12.
7
Evidence that specific interactions play a role in the cholesterol sensitivity of G protein-coupled receptors.
Biochim Biophys Acta Biomembr. 2021 Sep 1;1863(9):183557. doi: 10.1016/j.bbamem.2021.183557. Epub 2021 Jan 11.
8
Applying high-performance computing in drug discovery and molecular simulation.
Natl Sci Rev. 2016 Mar;3(1):49-63. doi: 10.1093/nsr/nww003. Epub 2016 Jan 11.
10
Interfacial Binding Sites for Cholesterol on G Protein-Coupled Receptors.
Biophys J. 2019 May 7;116(9):1586-1597. doi: 10.1016/j.bpj.2019.03.025. Epub 2019 Apr 2.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Structure of a beta1-adrenergic G-protein-coupled receptor.
Nature. 2008 Jul 24;454(7203):486-91. doi: 10.1038/nature07101. Epub 2008 Jun 25.
3
Internal hydration increases during activation of the G-protein-coupled receptor rhodopsin.
J Mol Biol. 2008 Aug 29;381(2):478-86. doi: 10.1016/j.jmb.2008.05.036. Epub 2008 May 22.
6
High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation.
Proc Natl Acad Sci U S A. 2008 May 27;105(21):7439-44. doi: 10.1073/pnas.0802515105. Epub 2008 May 19.
8
Ligand-stabilized conformational states of human beta(2) adrenergic receptor: insight into G-protein-coupled receptor activation.
Biophys J. 2008 Mar 15;94(6):2027-42. doi: 10.1529/biophysj.107.117648. Epub 2007 Dec 7.
9
High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor.
Science. 2007 Nov 23;318(5854):1258-65. doi: 10.1126/science.1150577. Epub 2007 Oct 25.
10
GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function.
Science. 2007 Nov 23;318(5854):1266-73. doi: 10.1126/science.1150609. Epub 2007 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验