Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021, USA.
Proteins. 2009 Aug 1;76(2):403-17. doi: 10.1002/prot.22355.
An unresolved question about GPCR function is the role of membrane components in receptor stability and activation. In particular, cholesterol is known to affect the function of membrane proteins, but the details of its effect on GPCRs are still elusive. Here, we describe how cholesterol modulates the behavior of the TM1-TM2-TM7-helix 8(H8) functional network that comprises the highly conserved NPxxY(x)(5,6)F motif, through specific interactions with the receptor. The inferences are based on the analysis of microsecond length molecular dynamics (MD) simulations of rhodopsin in an explicit membrane environment. Three regions on the rhodopsin exhibit the highest cholesterol density throughout the trajectory: the extracellular end of TM7, a location resembling the high-density sterol area from the electron microscopy data; the intracellular parts of TM1, TM2, and TM4, a region suggested as the cholesterol binding site in the recent X-ray crystallography data on beta(2)-adrenergic GPCR; and the intracellular ends of TM2-TM3, a location that was categorized as the high cholesterol density area in multiple independent 100 ns MD simulations of the same system. We found that cholesterol primarily affects specific local perturbations of the helical TM domains such as the kinks in TM1, TM2, and TM7. These local distortions, in turn, relate to rigid-body motions of the TMs in the TM1-TM2-TM7-H8 bundle. The specificity of the effects stems from the nonuniform distribution of cholesterol around the protein. Through correlation analysis we connect local effects of cholesterol on structural perturbations with a regulatory role of cholesterol in the structural rearrangements involved in GPCR function.
GPCR 功能的一个悬而未决的问题是膜成分在受体稳定性和激活中的作用。特别是,胆固醇已知会影响膜蛋白的功能,但它对 GPCR 的影响细节仍难以捉摸。在这里,我们描述了胆固醇如何通过与受体的特定相互作用来调节 TM1-TM2-TM7-螺旋 8(H8)功能网络的行为,该网络包含高度保守的 NPxxY(x)(5,6)F 基序。推断是基于对明确定义的膜环境中视紫红质的微秒长度分子动力学(MD)模拟的分析。在整个轨迹中,视紫红质有三个区域表现出最高的胆固醇密度:TM7 的细胞外末端,这是一个类似于电子显微镜数据中高密度固醇区域的位置;TM1、TM2 和 TM4 的细胞内部分,这是最近β 2-肾上腺素能 GPCR 的 X 射线晶体学数据中提出的胆固醇结合位点的区域;以及 TM2-TM3 的细胞内末端,这是在同一系统的多个独立的 100ns MD 模拟中被归类为高胆固醇密度区域的位置。我们发现胆固醇主要影响螺旋 TM 结构域的特定局部扰动,如 TM1、TM2 和 TM7 的弯曲。这些局部扭曲反过来又与 TM1-TM2-TM7-H8 束中 TM 的刚体运动有关。这种影响的特异性源于胆固醇在蛋白质周围的非均匀分布。通过相关分析,我们将胆固醇对结构扰动的局部影响与胆固醇在 GPCR 功能涉及的结构重排中的调节作用联系起来。